Regularity of infinite dimensional heat dynamics of unbounded lattice spins with non-constant diffusion coefficients

Below we demonstrate how the C^∞-regular properties of heat dynamics with non-unit nonlinear diffusion coefficient can be studied. We consider an infinite dimensional model, describing evolution of unbounded lattice spins R^Z^d. As a main step we provide a construction of corresponding variational p...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Antoniouk, A.Val., Antoniouk, A.Vict.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2007
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/10116
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Regularity of infinite dimensional heat dynamics of unbounded lattice spins with non-constant diffusion coefficients / A.Val. Antoniouk, A.Vict. Antoniouk // Нелинейные граничные задачи. — 2007. — Т. 17. — С. 101-129. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Below we demonstrate how the C^∞-regular properties of heat dynamics with non-unit nonlinear diffusion coefficient can be studied. We consider an infinite dimensional model, describing evolution of unbounded lattice spins R^Z^d. As a main step we provide a construction of corresponding variational processes in ℓp(c) spaces with growing weights ck ~ e^a|k|, k belongs Z^d. Developing the approach of nonlinear estimates on variations, we find sufficient conditions on the nonlinear coefficients of differential equation that lead to C^∞-regularity of solutions with respect to the initial data and C^∞-regularity of corresponding heat semigroup.