General First Order Matrix Difference System — Existence and Uniqueness via New Lattice Based Cryptographic Construction

This paper is concerned with the existence and uniqueness of solutions to two-point boundary value problems associated with general first order matrix difference systems. Modified Gram—Schmidt process and modified QR-algorithm are presented to find the best least square solution of the system of equ...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Sastry, B.R., Murty, K.N., Balaram, V.V.S.S.S.
Формат: Стаття
Мова:English
Опубліковано: Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України 2007
Назва видання:Электронное моделирование
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/101768
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:General First Order Matrix Difference System — Existence and Uniqueness via New Lattice Based Cryptographic Construction / B.R. Sastry, K.N. Murty, V.V.S.S.S. Balaram // Электронное моделирование. — 2007. — Т. 29, № 3. — С. 27-40. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:This paper is concerned with the existence and uniqueness of solutions to two-point boundary value problems associated with general first order matrix difference systems. Modified Gram—Schmidt process and modified QR-algorithm are presented to find the best least square solution of the system of equations. An efficient closest point search algorithm is presented to further improve the best least square solution. Modified encoding and decoding algorithms are presented in the process of finding shortest lattice vector.