General First Order Matrix Difference System — Existence and Uniqueness via New Lattice Based Cryptographic Construction
This paper is concerned with the existence and uniqueness of solutions to two-point boundary value problems associated with general first order matrix difference systems. Modified Gram—Schmidt process and modified QR-algorithm are presented to find the best least square solution of the system of equ...
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут проблем моделювання в енергетиці ім. Г.Є. Пухова НАН України
2007
|
Назва видання: | Электронное моделирование |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/101768 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | General First Order Matrix Difference System — Existence and Uniqueness via New Lattice Based Cryptographic Construction / B.R. Sastry, K.N. Murty, V.V.S.S.S. Balaram // Электронное моделирование. — 2007. — Т. 29, № 3. — С. 27-40. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | This paper is concerned with the existence and uniqueness of solutions to two-point boundary value problems associated with general first order matrix difference systems. Modified Gram—Schmidt process and modified QR-algorithm are presented to find the best least square solution of the system of equations. An efficient closest point search algorithm is presented to further improve the best least square solution. Modified encoding and decoding algorithms are presented in the process of finding shortest lattice vector. |
---|