Dominated Convergence and Egorov Theorems for Filter Convergen

We study the filters, such that for convergence with respect to this filters the Lebesgue dominated convergence theorem and the Egorov theorem on almost uniform convergence are valid (the Lebesgue filters and the Egorov filters, respectively). Some characterizations of the Egorov and the Lebesgue fi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Kadets, V., Leonov, A.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2007
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/106445
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Dominated Convergence and Egorov Theorems for Filter Convergen / V. Kadets, A. Leonov // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 196-212. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-106445
record_format dspace
spelling irk-123456789-1064452016-09-29T03:02:16Z Dominated Convergence and Egorov Theorems for Filter Convergen Kadets, V. Leonov, A. We study the filters, such that for convergence with respect to this filters the Lebesgue dominated convergence theorem and the Egorov theorem on almost uniform convergence are valid (the Lebesgue filters and the Egorov filters, respectively). Some characterizations of the Egorov and the Lebesgue filters are given. It is shown that the class of Egorov filters is a proper subset of the class of Lebesgue filters, in particular, statistical convergence filter is the Lebesgue but not the Egorov filter. It is also shown that there are no free Lebesgue ultrafilters. Significant attention is paid to the filters generated by a matrix summability method. 2007 Article Dominated Convergence and Egorov Theorems for Filter Convergen / V. Kadets, A. Leonov // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 196-212. — Бібліогр.: 11 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106445 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We study the filters, such that for convergence with respect to this filters the Lebesgue dominated convergence theorem and the Egorov theorem on almost uniform convergence are valid (the Lebesgue filters and the Egorov filters, respectively). Some characterizations of the Egorov and the Lebesgue filters are given. It is shown that the class of Egorov filters is a proper subset of the class of Lebesgue filters, in particular, statistical convergence filter is the Lebesgue but not the Egorov filter. It is also shown that there are no free Lebesgue ultrafilters. Significant attention is paid to the filters generated by a matrix summability method.
format Article
author Kadets, V.
Leonov, A.
spellingShingle Kadets, V.
Leonov, A.
Dominated Convergence and Egorov Theorems for Filter Convergen
Журнал математической физики, анализа, геометрии
author_facet Kadets, V.
Leonov, A.
author_sort Kadets, V.
title Dominated Convergence and Egorov Theorems for Filter Convergen
title_short Dominated Convergence and Egorov Theorems for Filter Convergen
title_full Dominated Convergence and Egorov Theorems for Filter Convergen
title_fullStr Dominated Convergence and Egorov Theorems for Filter Convergen
title_full_unstemmed Dominated Convergence and Egorov Theorems for Filter Convergen
title_sort dominated convergence and egorov theorems for filter convergen
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2007
url http://dspace.nbuv.gov.ua/handle/123456789/106445
citation_txt Dominated Convergence and Egorov Theorems for Filter Convergen / V. Kadets, A. Leonov // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 196-212. — Бібліогр.: 11 назв. — англ.
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT kadetsv dominatedconvergenceandegorovtheoremsforfilterconvergen
AT leonova dominatedconvergenceandegorovtheoremsforfilterconvergen
first_indexed 2023-10-18T20:12:57Z
last_indexed 2023-10-18T20:12:57Z
_version_ 1796149277372710912