On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives
For a formal power series the conditions on the Gelfond-Leont'ev derivatives are found, under which the series represents a function, analytic in the disk {z : |z| < R}, 0 < R ≤ +∞.
Збережено в:
Дата: | 2007 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2007
|
Назва видання: | Журнал математической физики, анализа, геометрии |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/106448 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives / M.M. Sheremeta, O.A. Volokh // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 241-252. — Бібліогр.: 3 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-106448 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1064482016-09-29T03:02:18Z On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives Sheremeta, M.M. Volokh, O.A. For a formal power series the conditions on the Gelfond-Leont'ev derivatives are found, under which the series represents a function, analytic in the disk {z : |z| < R}, 0 < R ≤ +∞. 2007 Article On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives / M.M. Sheremeta, O.A. Volokh // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 241-252. — Бібліогр.: 3 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106448 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
For a formal power series the conditions on the Gelfond-Leont'ev derivatives are found, under which the series represents a function, analytic in the disk {z : |z| < R}, 0 < R ≤ +∞. |
format |
Article |
author |
Sheremeta, M.M. Volokh, O.A. |
spellingShingle |
Sheremeta, M.M. Volokh, O.A. On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives Журнал математической физики, анализа, геометрии |
author_facet |
Sheremeta, M.M. Volokh, O.A. |
author_sort |
Sheremeta, M.M. |
title |
On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives |
title_short |
On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives |
title_full |
On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives |
title_fullStr |
On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives |
title_full_unstemmed |
On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives |
title_sort |
on a convergence of formal power series under a special condition on the gelfond-leont'ev derivatives |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2007 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/106448 |
citation_txt |
On a Convergence of Formal Power Series Under a Special Condition on the Gelfond-Leont'ev Derivatives / M.M. Sheremeta, O.A. Volokh // Журнал математической физики, анализа, геометрии. — 2007. — Т. 3, № 2. — С. 241-252. — Бібліогр.: 3 назв. — англ. |
series |
Журнал математической физики, анализа, геометрии |
work_keys_str_mv |
AT sheremetamm onaconvergenceofformalpowerseriesunderaspecialconditiononthegelfondleontevderivatives AT volokhoa onaconvergenceofformalpowerseriesunderaspecialconditiononthegelfondleontevderivatives |
first_indexed |
2023-10-18T20:12:58Z |
last_indexed |
2023-10-18T20:12:58Z |
_version_ |
1796149277687283712 |