Central Limit Theorem for Linear Eigenvalue Statistics of Orthogonally Invariant Matrix Models
We prove central limit theorem for linear eigenvalue statistics of orthogonally invariant ensembles of random matrices with one interval limiting spectrum. We consider ensembles with real analytic potentials and test functions with two bounded derivatives.
Збережено в:
Дата: | 2008 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2008
|
Назва видання: | Журнал математической физики, анализа, геометрии |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/106500 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Central Limit Theorem for Linear Eigenvalue Statistics of Orthogonally Invariant Matrix Models / M. Shcherbina // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 1. — С. 171-195. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-106500 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1065002016-09-30T03:02:51Z Central Limit Theorem for Linear Eigenvalue Statistics of Orthogonally Invariant Matrix Models Shcherbina, M. We prove central limit theorem for linear eigenvalue statistics of orthogonally invariant ensembles of random matrices with one interval limiting spectrum. We consider ensembles with real analytic potentials and test functions with two bounded derivatives. 2008 Article Central Limit Theorem for Linear Eigenvalue Statistics of Orthogonally Invariant Matrix Models / M. Shcherbina // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 1. — С. 171-195. — Бібліогр.: 18 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106500 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We prove central limit theorem for linear eigenvalue statistics of orthogonally invariant ensembles of random matrices with one interval limiting spectrum. We consider ensembles with real analytic potentials and test functions with two bounded derivatives. |
format |
Article |
author |
Shcherbina, M. |
spellingShingle |
Shcherbina, M. Central Limit Theorem for Linear Eigenvalue Statistics of Orthogonally Invariant Matrix Models Журнал математической физики, анализа, геометрии |
author_facet |
Shcherbina, M. |
author_sort |
Shcherbina, M. |
title |
Central Limit Theorem for Linear Eigenvalue Statistics of Orthogonally Invariant Matrix Models |
title_short |
Central Limit Theorem for Linear Eigenvalue Statistics of Orthogonally Invariant Matrix Models |
title_full |
Central Limit Theorem for Linear Eigenvalue Statistics of Orthogonally Invariant Matrix Models |
title_fullStr |
Central Limit Theorem for Linear Eigenvalue Statistics of Orthogonally Invariant Matrix Models |
title_full_unstemmed |
Central Limit Theorem for Linear Eigenvalue Statistics of Orthogonally Invariant Matrix Models |
title_sort |
central limit theorem for linear eigenvalue statistics of orthogonally invariant matrix models |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/106500 |
citation_txt |
Central Limit Theorem for Linear Eigenvalue Statistics of Orthogonally Invariant Matrix Models / M. Shcherbina // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 1. — С. 171-195. — Бібліогр.: 18 назв. — англ. |
series |
Журнал математической физики, анализа, геометрии |
work_keys_str_mv |
AT shcherbinam centrallimittheoremforlineareigenvaluestatisticsoforthogonallyinvariantmatrixmodels |
first_indexed |
2023-10-18T20:13:05Z |
last_indexed |
2023-10-18T20:13:05Z |
_version_ |
1796149282551627776 |