Submanifolds with the Harmonic Gauss Map in Lie Groups

In this paper we find a criterion for the Gauss map of an immersed smooth submanifold in some Lie group with left invariant metric to be harmonic. Using the obtained expression we prove some necessary and sufficient conditions for the harmonicity of this map in the case of totally geodesic submanifo...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2008
Автор: Petrov, Ye.V.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2008
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/106507
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Submanifolds with the Harmonic Gauss Map in Lie Groups / Ye.V. Petrov // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 2. — С. 278-293. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In this paper we find a criterion for the Gauss map of an immersed smooth submanifold in some Lie group with left invariant metric to be harmonic. Using the obtained expression we prove some necessary and sufficient conditions for the harmonicity of this map in the case of totally geodesic submanifolds in Lie groups admitting biinvariant metrics. We show that, depending on the structure of the tangent space of a submanifold, the Gauss map can be harmonic in all biinvariant metrics or nonharmonic in some metric. For 2-step nilpotent groups we prove that the Gauss map of a geodesic is harmonic if and only if it is constant.