On Contraction Properties for Products of Markov Driven Random Matrices
We describe contraction properties on pro jective spaces for products of matrices governed by Markov chains which satisfy strong mixing conditions. Assuming that the subgroup generated by the corresponding matrices is "large" we show in particular that the top Lyapunov exponent of their pr...
Збережено в:
Дата: | 2008 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2008
|
Назва видання: | Журнал математической физики, анализа, геометрии |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/106519 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On Contraction Properties for Products of Markov Driven Random Matrices / Y. Guivarc'h // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 4. — С. 457-489. — Бібліогр.: 39 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-106519 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1065192016-09-30T03:03:03Z On Contraction Properties for Products of Markov Driven Random Matrices Guivarc'h, Y. We describe contraction properties on pro jective spaces for products of matrices governed by Markov chains which satisfy strong mixing conditions. Assuming that the subgroup generated by the corresponding matrices is "large" we show in particular that the top Lyapunov exponent of their product has multiplicity one and we give an exposition of the related results. 2008 Article On Contraction Properties for Products of Markov Driven Random Matrices / Y. Guivarc'h // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 4. — С. 457-489. — Бібліогр.: 39 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106519 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We describe contraction properties on pro jective spaces for products of matrices governed by Markov chains which satisfy strong mixing conditions. Assuming that the subgroup generated by the corresponding matrices is "large" we show in particular that the top Lyapunov exponent of their product has multiplicity one and we give an exposition of the related results. |
format |
Article |
author |
Guivarc'h, Y. |
spellingShingle |
Guivarc'h, Y. On Contraction Properties for Products of Markov Driven Random Matrices Журнал математической физики, анализа, геометрии |
author_facet |
Guivarc'h, Y. |
author_sort |
Guivarc'h, Y. |
title |
On Contraction Properties for Products of Markov Driven Random Matrices |
title_short |
On Contraction Properties for Products of Markov Driven Random Matrices |
title_full |
On Contraction Properties for Products of Markov Driven Random Matrices |
title_fullStr |
On Contraction Properties for Products of Markov Driven Random Matrices |
title_full_unstemmed |
On Contraction Properties for Products of Markov Driven Random Matrices |
title_sort |
on contraction properties for products of markov driven random matrices |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2008 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/106519 |
citation_txt |
On Contraction Properties for Products of Markov Driven Random Matrices / Y. Guivarc'h // Журнал математической физики, анализа, геометрии. — 2008. — Т. 4, № 4. — С. 457-489. — Бібліогр.: 39 назв. — англ. |
series |
Журнал математической физики, анализа, геометрии |
work_keys_str_mv |
AT guivarchy oncontractionpropertiesforproductsofmarkovdrivenrandommatrices |
first_indexed |
2023-10-18T20:13:08Z |
last_indexed |
2023-10-18T20:13:08Z |
_version_ |
1796149284548116480 |