Retroreflecting Curves in Nonstandard Analysis
We present a direct construction of retroreflecting curves by means of Nonstandard Analysis. We construct non self-intersecting curves which are of class C¹, except for a hyper-finite set of values, such that the probability of a particle being reflected from the curve with the velocity opposite to...
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2009
|
Назва видання: | Журнал математической физики, анализа, геометрии |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/106530 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Retroreflecting Curves in Nonstandard Analysis / R. Almeida, V. Neves, A. Plakhov // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 1. — С. 12-24. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | We present a direct construction of retroreflecting curves by means of Nonstandard Analysis. We construct non self-intersecting curves which are of class C¹, except for a hyper-finite set of values, such that the probability of a particle being reflected from the curve with the velocity opposite to the velocity of incidence, is infinitely close to 1. The constructed curves are of two kinds: a curve infinitely close to a straight line and a curve infinitely close to the boundary of a bounded convex set. We shall see that the latter curve is a solution of the problem: find the curve of maximum resistance in nitely close to a given curve. |
---|