Retroreflecting Curves in Nonstandard Analysis

We present a direct construction of retroreflecting curves by means of Nonstandard Analysis. We construct non self-intersecting curves which are of class C¹, except for a hyper-finite set of values, such that the probability of a particle being reflected from the curve with the velocity opposite to...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Almeida, R., Neves, V., Plakhov, A.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2009
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/106530
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Retroreflecting Curves in Nonstandard Analysis / R. Almeida, V. Neves, A. Plakhov // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 1. — С. 12-24. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-106530
record_format dspace
spelling irk-123456789-1065302016-10-01T03:01:44Z Retroreflecting Curves in Nonstandard Analysis Almeida, R. Neves, V. Plakhov, A. We present a direct construction of retroreflecting curves by means of Nonstandard Analysis. We construct non self-intersecting curves which are of class C¹, except for a hyper-finite set of values, such that the probability of a particle being reflected from the curve with the velocity opposite to the velocity of incidence, is infinitely close to 1. The constructed curves are of two kinds: a curve infinitely close to a straight line and a curve infinitely close to the boundary of a bounded convex set. We shall see that the latter curve is a solution of the problem: find the curve of maximum resistance in nitely close to a given curve. 2009 Article Retroreflecting Curves in Nonstandard Analysis / R. Almeida, V. Neves, A. Plakhov // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 1. — С. 12-24. — Бібліогр.: 7 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106530 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We present a direct construction of retroreflecting curves by means of Nonstandard Analysis. We construct non self-intersecting curves which are of class C¹, except for a hyper-finite set of values, such that the probability of a particle being reflected from the curve with the velocity opposite to the velocity of incidence, is infinitely close to 1. The constructed curves are of two kinds: a curve infinitely close to a straight line and a curve infinitely close to the boundary of a bounded convex set. We shall see that the latter curve is a solution of the problem: find the curve of maximum resistance in nitely close to a given curve.
format Article
author Almeida, R.
Neves, V.
Plakhov, A.
spellingShingle Almeida, R.
Neves, V.
Plakhov, A.
Retroreflecting Curves in Nonstandard Analysis
Журнал математической физики, анализа, геометрии
author_facet Almeida, R.
Neves, V.
Plakhov, A.
author_sort Almeida, R.
title Retroreflecting Curves in Nonstandard Analysis
title_short Retroreflecting Curves in Nonstandard Analysis
title_full Retroreflecting Curves in Nonstandard Analysis
title_fullStr Retroreflecting Curves in Nonstandard Analysis
title_full_unstemmed Retroreflecting Curves in Nonstandard Analysis
title_sort retroreflecting curves in nonstandard analysis
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2009
url http://dspace.nbuv.gov.ua/handle/123456789/106530
citation_txt Retroreflecting Curves in Nonstandard Analysis / R. Almeida, V. Neves, A. Plakhov // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 1. — С. 12-24. — Бібліогр.: 7 назв. — англ.
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT almeidar retroreflectingcurvesinnonstandardanalysis
AT nevesv retroreflectingcurvesinnonstandardanalysis
AT plakhova retroreflectingcurvesinnonstandardanalysis
first_indexed 2023-10-18T20:13:09Z
last_indexed 2023-10-18T20:13:09Z
_version_ 1796149285176213504