Long-Time Asymptotic Behavior of an Integrable Model of the Stimulated Raman Scattering with Periodic Boundary Data
The long-time asymptotic behavior of the initial-boundary value (IBV) problem in the quarter plane (x > 0, t > 0) for nonlinear integrable equations of the stimulated Raman scattering is studied. Considered is the case of zero initial condition and single-phase boundary data. By using the stee...
Збережено в:
Дата: | 2009 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2009
|
Назва видання: | Журнал математической физики, анализа, геометрии |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/106550 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Long-Time Asymptotic Behavior of an Integrable Model of the Stimulated Raman Scattering with Periodic Boundary Data / E.A. Moskovchenko, V.P. Kotlyarov // Журнал математической физики, анализа, геометрии. — 2009. — Т. 5, № 4. — С. 386-395. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The long-time asymptotic behavior of the initial-boundary value (IBV) problem in the quarter plane (x > 0, t > 0) for nonlinear integrable equations of the stimulated Raman scattering is studied. Considered is the case of zero initial condition and single-phase boundary data. By using the steepest descent method for oscillatory matrix Riemann{Hilbert problems it is shown that the solution of the IBV problem has different asymptotic behavior in different regions |
---|