On Existence of a Regular Hypersimplex Inscribed into the (4n - 1)-Dimensional Cube
It is proved the existence of a regular hypersimplex inscribed into the (4n-1)-dimensional cube under condition that some system of 4n-2 algebraic equations with 4n-2 unknown quantities y0, y'0, y1; y'1,..., y2n-2, y'2n-2 has at least one solution with a real value of y0 or any other...
Збережено в:
Дата: | 2006 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2006
|
Назва видання: | Журнал математической физики, анализа, геометрии |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/106581 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | On Existence of a Regular Hypersimplex Inscribed into the (4n - 1)-Dimensional Cube / A.I. Medianik // Журнал математической физики, анализа, геометрии. — 2006. — Т. 2, № 1. — С. 62-72. — Бібліогр.: 4 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-106581 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1065812016-10-01T03:02:10Z On Existence of a Regular Hypersimplex Inscribed into the (4n - 1)-Dimensional Cube Medianik, A.I. It is proved the existence of a regular hypersimplex inscribed into the (4n-1)-dimensional cube under condition that some system of 4n-2 algebraic equations with 4n-2 unknown quantities y0, y'0, y1; y'1,..., y2n-2, y'2n-2 has at least one solution with a real value of y0 or any other yi ≠ 0, i ≥ 1. 2006 Article On Existence of a Regular Hypersimplex Inscribed into the (4n - 1)-Dimensional Cube / A.I. Medianik // Журнал математической физики, анализа, геометрии. — 2006. — Т. 2, № 1. — С. 62-72. — Бібліогр.: 4 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106581 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
It is proved the existence of a regular hypersimplex inscribed into the (4n-1)-dimensional cube under condition that some system of 4n-2 algebraic equations with 4n-2 unknown quantities y0, y'0, y1; y'1,..., y2n-2, y'2n-2 has at least one solution with a real value of y0 or any other yi ≠ 0, i ≥ 1. |
format |
Article |
author |
Medianik, A.I. |
spellingShingle |
Medianik, A.I. On Existence of a Regular Hypersimplex Inscribed into the (4n - 1)-Dimensional Cube Журнал математической физики, анализа, геометрии |
author_facet |
Medianik, A.I. |
author_sort |
Medianik, A.I. |
title |
On Existence of a Regular Hypersimplex Inscribed into the (4n - 1)-Dimensional Cube |
title_short |
On Existence of a Regular Hypersimplex Inscribed into the (4n - 1)-Dimensional Cube |
title_full |
On Existence of a Regular Hypersimplex Inscribed into the (4n - 1)-Dimensional Cube |
title_fullStr |
On Existence of a Regular Hypersimplex Inscribed into the (4n - 1)-Dimensional Cube |
title_full_unstemmed |
On Existence of a Regular Hypersimplex Inscribed into the (4n - 1)-Dimensional Cube |
title_sort |
on existence of a regular hypersimplex inscribed into the (4n - 1)-dimensional cube |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2006 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/106581 |
citation_txt |
On Existence of a Regular Hypersimplex Inscribed into the (4n - 1)-Dimensional Cube / A.I. Medianik // Журнал математической физики, анализа, геометрии. — 2006. — Т. 2, № 1. — С. 62-72. — Бібліогр.: 4 назв. — англ. |
series |
Журнал математической физики, анализа, геометрии |
work_keys_str_mv |
AT medianikai onexistenceofaregularhypersimplexinscribedintothe4n1dimensionalcube |
first_indexed |
2023-10-18T20:13:15Z |
last_indexed |
2023-10-18T20:13:15Z |
_version_ |
1796149289702916096 |