On Pseudospherical Surfaces in E⁴ with Grassmann Image of Prescribed Type

It is demonstrated that there exist surfaces of constant negative Gauss curvature in E⁴ whose Grassmann image consists of either hyperbolic or parabolic or elliptic points. As a consequence, there exist surfaces of constant negative Gauss curvature in E⁴ which do not admit Backlund transformations w...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Gorkavyy, V.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2006
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/106588
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Pseudospherical Surfaces in E⁴ with Grassmann Image of Prescribed Type / V. Gorkavyy // Журнал математической физики, анализа, геометрии. — 2006. — Т. 2, № 2. — С. 138-148. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-106588
record_format dspace
spelling irk-123456789-1065882016-10-01T03:02:19Z On Pseudospherical Surfaces in E⁴ with Grassmann Image of Prescribed Type Gorkavyy, V. It is demonstrated that there exist surfaces of constant negative Gauss curvature in E⁴ whose Grassmann image consists of either hyperbolic or parabolic or elliptic points. As a consequence, there exist surfaces of constant negative Gauss curvature in E⁴ which do not admit Backlund transformations with help of pseudospherical congruencies. A geometric representation for pseudospherical surfaces in E⁴ with parabolic Grassmann image is proposed. 2006 Article On Pseudospherical Surfaces in E⁴ with Grassmann Image of Prescribed Type / V. Gorkavyy // Журнал математической физики, анализа, геометрии. — 2006. — Т. 2, № 2. — С. 138-148. — Бібліогр.: 12 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106588 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description It is demonstrated that there exist surfaces of constant negative Gauss curvature in E⁴ whose Grassmann image consists of either hyperbolic or parabolic or elliptic points. As a consequence, there exist surfaces of constant negative Gauss curvature in E⁴ which do not admit Backlund transformations with help of pseudospherical congruencies. A geometric representation for pseudospherical surfaces in E⁴ with parabolic Grassmann image is proposed.
format Article
author Gorkavyy, V.
spellingShingle Gorkavyy, V.
On Pseudospherical Surfaces in E⁴ with Grassmann Image of Prescribed Type
Журнал математической физики, анализа, геометрии
author_facet Gorkavyy, V.
author_sort Gorkavyy, V.
title On Pseudospherical Surfaces in E⁴ with Grassmann Image of Prescribed Type
title_short On Pseudospherical Surfaces in E⁴ with Grassmann Image of Prescribed Type
title_full On Pseudospherical Surfaces in E⁴ with Grassmann Image of Prescribed Type
title_fullStr On Pseudospherical Surfaces in E⁴ with Grassmann Image of Prescribed Type
title_full_unstemmed On Pseudospherical Surfaces in E⁴ with Grassmann Image of Prescribed Type
title_sort on pseudospherical surfaces in e⁴ with grassmann image of prescribed type
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2006
url http://dspace.nbuv.gov.ua/handle/123456789/106588
citation_txt On Pseudospherical Surfaces in E⁴ with Grassmann Image of Prescribed Type / V. Gorkavyy // Журнал математической физики, анализа, геометрии. — 2006. — Т. 2, № 2. — С. 138-148. — Бібліогр.: 12 назв. — англ.
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT gorkavyyv onpseudosphericalsurfacesine4withgrassmannimageofprescribedtype
first_indexed 2023-10-18T20:13:16Z
last_indexed 2023-10-18T20:13:16Z
_version_ 1796149290437967872