On the Characteristic Operators and Projections and on the Solutions of Weyl Type of Dissipative and Accumulative Operator Systems. II. Abstract Theory

Special maximal semi-definite subspaces (maximal dissipative and accumulative relations) are considered. Particular cases of those arise in studying boundary problems for systems mentioned in the title. We provide a description of such subspaces and list their properties. A criterion is found that c...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Khrabustovsky, V.I.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2006
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/106621
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the Characteristic Operators and Projections and on the Solutions of Weyl Type of Dissipative and Accumulative Operator Systems. II. Abstract Theory / V.I. Khrabustovsky // Журнал математической физики, анализа, геометрии. — 2006. — Т. 2, № 3. — С. 299-317. — Бібліогр.: 35 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Special maximal semi-definite subspaces (maximal dissipative and accumulative relations) are considered. Particular cases of those arise in studying boundary problems for systems mentioned in the title. We provide a description of such subspaces and list their properties. A criterion is found that condition of semi-definiteness of sum of indefinite quadratic forms reduces to semi-definiteness of each of the summand forms, i.e it is separated. In the case when the forms depend on a parameter λ (e.g., a spectral parameter) within a domain Λ is in C, a condition is found under which separation of the semi-definiteness property at a single λ implies its separation for all λ.