Homogenization of the Neumann-Fourier Problem in a Thick Two-Level Junction of Type 3:2:1

We consider a mixed boundary-value problem for the Poisson equation in a two-level junction " which is the union of a domain Ω₀ and a large number of thin cylinders with cross-section of order O(ε²): The thin cylinders are divided into two levels depending on their lengths. In addition, the t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автори: Mel'nyk, T.A., Vashchuk, P.S.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2006
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/106622
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Homogenization of the Neumann-Fourier Problem in a Thick Two-Level Junction of Type 3:2:1 / T.A. Mel`nyk, P.S. Vashchuk // Журнал математической физики, анализа, геометрии. — 2006. — Т. 2, № 3. — С. 318-337. — Бібліогр.: 37 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We consider a mixed boundary-value problem for the Poisson equation in a two-level junction " which is the union of a domain Ω₀ and a large number of thin cylinders with cross-section of order O(ε²): The thin cylinders are divided into two levels depending on their lengths. In addition, the thin cylinders from each level are ε-periodically alternated. The nonuniform Neumann conditions are given on the lateral sides of the thin cylinders from the rst level and the uniform Fourier conditions are given on the lateral sides of the thin cylinders from the second level. We study the asymptotic behavior of the solution as ε → 0: The convergence theorem and the convergence of the energy integral are proved.