Daugavet Centers

An operator G: X → Y is said to be a Daugavet center if ||G + T|| = ||G|| + ||T|| for every rank-1 operator T: X → Y . The main result of the paper is: if G: X →! Y is a Daugavet center, Y is a subspace of a Banach space E, and J : Y → E is the natural embedding operator, then E can be equivalently...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Bosenko, T., Kadets, V.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2010
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/106629
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Daugavet Centers / T. Bosenko, V. Kadets // Журнал математической физики, анализа, геометрии. — 2010. — Т. 6, № 1. — С. 3-20. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-106629
record_format dspace
spelling irk-123456789-1066292016-10-02T03:02:41Z Daugavet Centers Bosenko, T. Kadets, V. An operator G: X → Y is said to be a Daugavet center if ||G + T|| = ||G|| + ||T|| for every rank-1 operator T: X → Y . The main result of the paper is: if G: X →! Y is a Daugavet center, Y is a subspace of a Banach space E, and J : Y → E is the natural embedding operator, then E can be equivalently renormed in such a way that J ○ G : X → E is also a Daugavet center. This result was previously known for the particular case X = Y, G = Id and only in separable spaces. The proof of our generalization is based on an idea completely di®erent from the original one. We also give some geometric characterizations of the Daugavet centers, present a number of examples, and generalize (mostly in straightforward manner) to Daugavet centers some results known previously for spaces with the Daugavet property. 2010 Article Daugavet Centers / T. Bosenko, V. Kadets // Журнал математической физики, анализа, геометрии. — 2010. — Т. 6, № 1. — С. 3-20. — Бібліогр.: 14 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106629 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description An operator G: X → Y is said to be a Daugavet center if ||G + T|| = ||G|| + ||T|| for every rank-1 operator T: X → Y . The main result of the paper is: if G: X →! Y is a Daugavet center, Y is a subspace of a Banach space E, and J : Y → E is the natural embedding operator, then E can be equivalently renormed in such a way that J ○ G : X → E is also a Daugavet center. This result was previously known for the particular case X = Y, G = Id and only in separable spaces. The proof of our generalization is based on an idea completely di®erent from the original one. We also give some geometric characterizations of the Daugavet centers, present a number of examples, and generalize (mostly in straightforward manner) to Daugavet centers some results known previously for spaces with the Daugavet property.
format Article
author Bosenko, T.
Kadets, V.
spellingShingle Bosenko, T.
Kadets, V.
Daugavet Centers
Журнал математической физики, анализа, геометрии
author_facet Bosenko, T.
Kadets, V.
author_sort Bosenko, T.
title Daugavet Centers
title_short Daugavet Centers
title_full Daugavet Centers
title_fullStr Daugavet Centers
title_full_unstemmed Daugavet Centers
title_sort daugavet centers
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2010
url http://dspace.nbuv.gov.ua/handle/123456789/106629
citation_txt Daugavet Centers / T. Bosenko, V. Kadets // Журнал математической физики, анализа, геометрии. — 2010. — Т. 6, № 1. — С. 3-20. — Бібліогр.: 14 назв. — англ.
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT bosenkot daugavetcenters
AT kadetsv daugavetcenters
first_indexed 2023-10-18T20:13:21Z
last_indexed 2023-10-18T20:13:21Z
_version_ 1796149294248493056