A Paley-Wiener Theorem for Periodic Scattering with Applications to the Korteweg-de Vries Equation

A one-dimensional SchrÄodinger operator which is a short-range perturbation of a finite-gap operator is considered. There are given the necessary and su±cient conditions on the left/right reflection coeffcient such that the difference of the potentials has finite support to the left/right, respectiv...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2010
Автори: Egorova, I., Tesch, l G.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2010
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/106630
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Paley-Wiener Theorem for Periodic Scattering with Applications to the Korteweg-de Vries Equation / I. Egorova, G. Teschl // Журнал математической физики, анализа, геометрии. — 2010. — Т. 6, № 1. — С. 21-33. — Бібліогр.: 24 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:A one-dimensional SchrÄodinger operator which is a short-range perturbation of a finite-gap operator is considered. There are given the necessary and su±cient conditions on the left/right reflection coeffcient such that the difference of the potentials has finite support to the left/right, respectively. Moreover, these results are applied to show a unique continuation type result for solutions of the Korteweg{de Vries equation in this context. By virtue of the Miura transform an analogous result for the modified Korteweg-de Vries equation is also obtained.