Antipodal Polygons and Half-Circulant Hadamard Matrices
As known, the question on the existence of Hadamard matrices of order m = 4n, where n is an arbitrary natural number, is equivalent to the question on the possibility to inscribe a regular hypersimplex into the (4n ¡ 1)-dimensional cube. We introduced a class of Hadamard matrices of order 4n of half...
Збережено в:
Дата: | 2010 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2010
|
Назва видання: | Журнал математической физики, анализа, геометрии |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/106633 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Antipodal Polygons and Half-Circulant Hadamard Matrices / A.I. Medianik // Журнал математической физики, анализа, геометрии. — 2010. — Т. 6, № 1. — С. 56-72. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-106633 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1066332016-10-02T03:02:46Z Antipodal Polygons and Half-Circulant Hadamard Matrices Medianik, A.I. As known, the question on the existence of Hadamard matrices of order m = 4n, where n is an arbitrary natural number, is equivalent to the question on the possibility to inscribe a regular hypersimplex into the (4n ¡ 1)-dimensional cube. We introduced a class of Hadamard matrices of order 4n of half-circulant type in 1997 and a class of antipodal n-gons inscribed into a regular (2n-1)-gon. In 2004 we proved that a half-circulant Hadamard ma- trix of order 4n exists if and only if there exist antipodal n-gons inscribed into a regular (2n-1)-gon. On this background there was developed the method of constructing of the Hadamard matrices of order 4n, which is universal, i.e., it can be applied to any arbitrary natural number n, including a prime number case, that usually requires the individual approach to the construction of the Hadamard matrix of corresponding order. In the paper, there are obtained the necessary and su±cient algebraic-geometric conditions for the existence of antipodal polygons allowing to justify the inductive approach to be used to the proof of existence theorems for Hadamard matrices of arbitrary order 4n, n ≥ 3. 2010 Article Antipodal Polygons and Half-Circulant Hadamard Matrices / A.I. Medianik // Журнал математической физики, анализа, геометрии. — 2010. — Т. 6, № 1. — С. 56-72. — Бібліогр.: 10 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106633 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
As known, the question on the existence of Hadamard matrices of order m = 4n, where n is an arbitrary natural number, is equivalent to the question on the possibility to inscribe a regular hypersimplex into the (4n ¡ 1)-dimensional cube. We introduced a class of Hadamard matrices of order 4n of half-circulant type in 1997 and a class of antipodal n-gons inscribed into a regular (2n-1)-gon. In 2004 we proved that a half-circulant Hadamard ma- trix of order 4n exists if and only if there exist antipodal n-gons inscribed into a regular (2n-1)-gon. On this background there was developed the method of constructing of the Hadamard matrices of order 4n, which is universal, i.e., it can be applied to any arbitrary natural number n, including a prime number case, that usually requires the individual approach to the construction of the Hadamard matrix of corresponding order. In the paper, there are obtained the necessary and su±cient algebraic-geometric conditions for the existence of antipodal polygons allowing to justify the inductive approach to be used to the proof of existence theorems for Hadamard matrices of arbitrary order 4n, n ≥ 3. |
format |
Article |
author |
Medianik, A.I. |
spellingShingle |
Medianik, A.I. Antipodal Polygons and Half-Circulant Hadamard Matrices Журнал математической физики, анализа, геометрии |
author_facet |
Medianik, A.I. |
author_sort |
Medianik, A.I. |
title |
Antipodal Polygons and Half-Circulant Hadamard Matrices |
title_short |
Antipodal Polygons and Half-Circulant Hadamard Matrices |
title_full |
Antipodal Polygons and Half-Circulant Hadamard Matrices |
title_fullStr |
Antipodal Polygons and Half-Circulant Hadamard Matrices |
title_full_unstemmed |
Antipodal Polygons and Half-Circulant Hadamard Matrices |
title_sort |
antipodal polygons and half-circulant hadamard matrices |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2010 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/106633 |
citation_txt |
Antipodal Polygons and Half-Circulant Hadamard Matrices / A.I. Medianik // Журнал математической физики, анализа, геометрии. — 2010. — Т. 6, № 1. — С. 56-72. — Бібліогр.: 10 назв. — англ. |
series |
Журнал математической физики, анализа, геометрии |
work_keys_str_mv |
AT medianikai antipodalpolygonsandhalfcirculanthadamardmatrices |
first_indexed |
2023-10-18T20:13:22Z |
last_indexed |
2023-10-18T20:13:22Z |
_version_ |
1796149294668972032 |