On the Characteristic Operators and Projections and on the Solutions of Weyl Type of Dissipative and Accumulative Operator Systems.III. Separated Boundary Conditions

For the systems as in the title, boundary-value problems with separated boundary conditions are considered. We prove that the characteristic operator of such problem admits a special expression in terms of the projection (characteristic projection). This allows one to introduce for the above systems...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Khrabustovsky, V.I.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2006
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/106679
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the Characteristic Operators and Projections and on the Solutions of Weyl Type of Dissipative and Accumulative Operator Systems.III. Separated Boundary Conditions / V.I. Khrabustovsky // Журнал математической физики, анализа, геометрии. — 2006. — Т. 2, № 4. — С. 449-473. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:For the systems as in the title, boundary-value problems with separated boundary conditions are considered. We prove that the characteristic operator of such problem admits a special expression in terms of the projection (characteristic projection). This allows one to introduce for the above systems the analogues of theWeyl functions and solutions, to establish for them the Weyl type inequalities which turn out to be well known in a number of special cases.