Infinite Dimensional Spaces and Cartesian Closedness
Infinite dimensional spaces frequently appear in physics; there are several approaches to obtain a good categorical framework for this type of space, and cartesian closedness of some category, embedding smooth manifolds, is one of the most requested condition. In the first part of the paper, we star...
Збережено в:
Дата: | 2011 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2011
|
Назва видання: | Журнал математической физики, анализа, геометрии |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/106684 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Infinite Dimensional Spaces and Cartesian Closedness / P. Giordano // Журнал математической физики, анализа, геометрии. — 2011. — Т. 7, № 3. — С. 225-284. — Бібліогр.: 89 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-106684 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1066842016-10-03T03:02:18Z Infinite Dimensional Spaces and Cartesian Closedness Giordano, P. Infinite dimensional spaces frequently appear in physics; there are several approaches to obtain a good categorical framework for this type of space, and cartesian closedness of some category, embedding smooth manifolds, is one of the most requested condition. In the first part of the paper, we start from the failures presented by the classical Banach manifolds approach and we will review the most studied approaches focusing on cartesian closedness: the convenient setting, diffeology and synthetic differential geometry. In the second part of the paper, we present a general settings to obtain cartesian closedness. Using this approach, we can also easily obtain the possibility to extend manifolds using nilpotent infinitesimal points, without any need to have a background in formal logic. 2011 Article Infinite Dimensional Spaces and Cartesian Closedness / P. Giordano // Журнал математической физики, анализа, геометрии. — 2011. — Т. 7, № 3. — С. 225-284. — Бібліогр.: 89 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106684 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
Infinite dimensional spaces frequently appear in physics; there are several approaches to obtain a good categorical framework for this type of space, and cartesian closedness of some category, embedding smooth manifolds, is one of the most requested condition. In the first part of the paper, we start from the failures presented by the classical Banach manifolds approach and we will review the most studied approaches focusing on cartesian closedness: the convenient setting, diffeology and synthetic differential geometry. In the second part of the paper, we present a general settings to obtain cartesian closedness. Using this approach, we can also easily obtain the possibility to extend manifolds using nilpotent infinitesimal points, without any need to have a background in formal logic. |
format |
Article |
author |
Giordano, P. |
spellingShingle |
Giordano, P. Infinite Dimensional Spaces and Cartesian Closedness Журнал математической физики, анализа, геометрии |
author_facet |
Giordano, P. |
author_sort |
Giordano, P. |
title |
Infinite Dimensional Spaces and Cartesian Closedness |
title_short |
Infinite Dimensional Spaces and Cartesian Closedness |
title_full |
Infinite Dimensional Spaces and Cartesian Closedness |
title_fullStr |
Infinite Dimensional Spaces and Cartesian Closedness |
title_full_unstemmed |
Infinite Dimensional Spaces and Cartesian Closedness |
title_sort |
infinite dimensional spaces and cartesian closedness |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2011 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/106684 |
citation_txt |
Infinite Dimensional Spaces and Cartesian Closedness / P. Giordano // Журнал математической физики, анализа, геометрии. — 2011. — Т. 7, № 3. — С. 225-284. — Бібліогр.: 89 назв. — англ. |
series |
Журнал математической физики, анализа, геометрии |
work_keys_str_mv |
AT giordanop infinitedimensionalspacesandcartesianclosedness |
first_indexed |
2023-10-18T20:13:29Z |
last_indexed |
2023-10-18T20:13:29Z |
_version_ |
1796149299506053120 |