Andreev-Korkin Identity, Saigo Fractional Integration Operator and LipL(α) Functions

The Andreev-Korkin identity for the Chebyshev functional is treated by Holder inequality, when the functional consists of LipL(α) functions. The derived upper bound is applied to the so-called Chebyshev-Saigo functional, built by Saigo fractional integral operator - recently introduced by Saxena et...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
Hauptverfasser: Jankov, D., Pogány, T.K.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2012
Schriftenreihe:Журнал математической физики, анализа, геометрии
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/106715
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Andreev-Korkin Identity, Saigo Fractional Integration Operator and LipL(α) Functions / D. Jankov, T.K. Pogány // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 2. — С. 144-157. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-106715
record_format dspace
spelling irk-123456789-1067152016-10-04T03:02:21Z Andreev-Korkin Identity, Saigo Fractional Integration Operator and LipL(α) Functions Jankov, D. Pogány, T.K. The Andreev-Korkin identity for the Chebyshev functional is treated by Holder inequality, when the functional consists of LipL(α) functions. The derived upper bound is applied to the so-called Chebyshev-Saigo functional, built by Saigo fractional integral operator - recently introduced by Saxena et al. (R.K. Saxena, J. Ram, J. Daiya, and T.K. Pogany - Integral Tranforms Spec. Funct. 22 (2011), 671-680). К тождеству Андреева-Коркина для функционала Чебышева с функциями применяется неравенство Гёльдера. Полученная верхняя граница применяется к так называемому функционалу Чебышева-Сеге, построенному при помощи оператора Сеге дробного интегрирования, предложенного недавно Р.К. Саксеной и др. (R.K. Saxena, J. Ram, J. Daiya, and T.K. Pogány. - Integral Tranforms Spec. Funct. 22 (2011), 671-680). 2012 Article Andreev-Korkin Identity, Saigo Fractional Integration Operator and LipL(α) Functions / D. Jankov, T.K. Pogány // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 2. — С. 144-157. — Бібліогр.: 9 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106715 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The Andreev-Korkin identity for the Chebyshev functional is treated by Holder inequality, when the functional consists of LipL(α) functions. The derived upper bound is applied to the so-called Chebyshev-Saigo functional, built by Saigo fractional integral operator - recently introduced by Saxena et al. (R.K. Saxena, J. Ram, J. Daiya, and T.K. Pogany - Integral Tranforms Spec. Funct. 22 (2011), 671-680).
format Article
author Jankov, D.
Pogány, T.K.
spellingShingle Jankov, D.
Pogány, T.K.
Andreev-Korkin Identity, Saigo Fractional Integration Operator and LipL(α) Functions
Журнал математической физики, анализа, геометрии
author_facet Jankov, D.
Pogány, T.K.
author_sort Jankov, D.
title Andreev-Korkin Identity, Saigo Fractional Integration Operator and LipL(α) Functions
title_short Andreev-Korkin Identity, Saigo Fractional Integration Operator and LipL(α) Functions
title_full Andreev-Korkin Identity, Saigo Fractional Integration Operator and LipL(α) Functions
title_fullStr Andreev-Korkin Identity, Saigo Fractional Integration Operator and LipL(α) Functions
title_full_unstemmed Andreev-Korkin Identity, Saigo Fractional Integration Operator and LipL(α) Functions
title_sort andreev-korkin identity, saigo fractional integration operator and lipl(α) functions
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2012
url http://dspace.nbuv.gov.ua/handle/123456789/106715
citation_txt Andreev-Korkin Identity, Saigo Fractional Integration Operator and LipL(α) Functions / D. Jankov, T.K. Pogány // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 2. — С. 144-157. — Бібліогр.: 9 назв. — англ.
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT jankovd andreevkorkinidentitysaigofractionalintegrationoperatorandliplafunctions
AT poganytk andreevkorkinidentitysaigofractionalintegrationoperatorandliplafunctions
first_indexed 2025-07-07T18:53:35Z
last_indexed 2025-07-07T18:53:35Z
_version_ 1837015412613578752
fulltext Journal of Mathematical Physics, Analysis, Geometry 2012, vol. 8, No. 2, pp. 144�157 Andreev�Korkin Identity, Saigo Fractional Integration Operator and LipL(α) Functions D. Jankov Department of Mathematics, University of Osijek Trg Lj. Gaja 6, 31000 Osijek, Croatia E-mail: djankov@mathos.hr T.K. Pog�any Faculty od Maritime Studies, University of Rijeka Studentska 2, 51000 Rijeka, Croatia E-mail: poganj@pfri.hr Received October 26, 2010, revised May 25, 2011 The Andreev�Korkin identity for the Chebyshev functional is treated by H�older inequality, when the functional consists of LipL(α) functions. The derived upper bound is applied to the so-called Chebyshev�Saigo functional, built by Saigo fractional integral operator � recently introduced by Saxena et al. (R.K. Saxena, J. Ram, J. Daiya, and T.K. Pog�any. � Integral Tranforms Spec. Funct. 22 (2011), 671�680). Key words: Chebyshev functional, Andreev�Korkin identity, Chebyshev� Saigo functional, Saigo hypergeometric fractional integration operator, Lip- schitz function clas. Mathematics Subject Classi�cation 2000: 26D15, 26A16 (primary); 26A33, 26D10 (secondary). 1. Introduction Let w : [0, 1] 7→ R+, w ∈ L1[0, 1] be a normalized weight function, that is, 1∫ 0 w(x)dx = 1 . The weighted Chebyshev functional is de�ned by T(w; f, g) := M(w; fg)−M(w; f)M(w; g) , (1.1) c© D. Jankov and T.K. Pog�any, 2012 Andreev�Korkin Identity, Saigo Fractional Integration Operator where M(w; f) denotes the integral mean M(w; f) = 1∫ 0 w(x)f(x)dx . (1.2) We point out that using another support interval supp(f) = [a, b] ⊂ R, say, di�erent from the unit one, we only achieve an arti�cial extension of (1.3), since obvious substitution x− a b− a : [a, b] 7→ [0, 1] leads us to (1.1). Now let us recall in short the Andreev�Korkin identity for the weighted Cheby- shev functional. In our setting this celebrated relation reads as follows: T(w; f, g) = 1 2 1∫ 0 1∫ 0 w(x)w(y)(f(x)− f(y))(g(x)− g(y)) dxdy . (1.3) R e m a r k 1.1. According to [1, pp. 6�7] starting from the �nite sums identity 1 n n∑ j=1 xjyj = ( 1 n n∑ j=1 xj )( 1 n n∑ j=1 yj ) + 1 n2 ∑ 1≤i<j≤n (xi − xj)(yi − yj) , (1.4) Korkin proved in 1882 Chebyshev's integral inequality [1, p. 2, Eq. (0.3)] in his letter to Bugaev [2] (in Russian) and presented the same procedure in the letter to Hermite [3] (in French), see also the most familiar source [4, pp. 242�243]. The identity analogous to Korkin's (1.4), where integrals replaced �nite sums, was obtained in the next year by Andreev [5], another mathematician from the celebrated Kharkiv Mathematical Society. It seems that A. Winckler (1884) and F. Franklin (1885) rediscovered inde- pendently Korkin's and Andreev's identities, respectively [1, p. 8], but we prefer to call (1.3) the Andreev�Korkin identity. 2. Andreev�Korkin Identity Built in Lipschitz Function Class Given two metric spaces (Ξ, d) and (Υ, d), where d(x, y) = |x − y|, x, y ∈ Ξ, Υ ⊆ R. A function f : Ξ 7→ Υ is said to be uniform Lipschitz of order α on Ξ if there exists an absolute constant L > 0 such that |f(x)− f(y)| ≤ L|x− y|α 0 < α ≤ 1, x, y ∈ Ξ . (2.1) Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 145 D. Jankov and T.K. Pog�any Here L is the Lipschitz constant, and the class consisting of such functions we write LipL(α). Theorem 2.1. Let r, s, r−1 +s−1 = 1, r > 1, be conjugated H�older exponents. Assume that f ∈ LipLf (αf ), f ∈ LipLg (αg). Then ∣∣T(w; f, g) ∣∣ ≤ LfLg 2 min { M1,M2 } , (2.2) where M1 = ( 1∫ 0 1∫ 0 w(x)w(y)|x− y|αf rdxdy )1/r( 1∫ 0 1∫ 0 w(x)w(y)|x− y|αgsdxdy )1/s , (2.3) M2 = 1 ( αfr + 1 )1/r( αgs + 1)1/s ( 1∫ 0 xαf r+1 { wr(x) + wr(1− x) } dx )1/r × ( 1∫ 0 xαgs+1 { ws(x) + ws(1− x) } dx )1/s . (2.4) P r o o f. By the triangle inequality and since r, s, r > 1 are conjugated, we conclude by virtue of the weighted H�older inequality from the Andreev�Korkin identity the following estimates: ∣∣T(w; f, g) ∣∣ ≤ 1 2 1∫ 0 1∫ 0 { w(x)w(y) }1/r+1/s∣∣f(x)− f(y) ∣∣ ∣∣g(x)− g(y) ∣∣ dxdy ≤ 1 2 ( 1∫ 0 1∫ 0 w(x)w(y) ∣∣f(x)− f(y) ∣∣r dxdy )1/r × ( 1∫ 0 1∫ 0 w(x)w(y) ∣∣g(x)− g(y) ∣∣s dxdy )1/s . (2.5) Because f ∈ LipLf (αf ), g ∈ LipLg (αg), we estimate the right�hand side of (2.5) by 146 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 Andreev�Korkin Identity, Saigo Fractional Integration Operator ∣∣T(w; f, g) ∣∣ ≤ LfLg 2 ( 1∫ 0 1∫ 0 w(x)w(y)|x− y|αf r dxdy )1/r × ( 1∫ 0 1∫ 0 w(x)w(y)|x− y|αgs dxdy )1/s which is evidently (2.3) up to the constant. To prove (2.4), we begin with regrouping the integrand in (2.5) separating two weight functions and employ the classical H�older inequality with the same couple of conjugated parameters r, s getting ∣∣T(w; f, g) ∣∣ ≤ 1 2 1∫ 0 1∫ 0 { w(x) ∣∣f(x)− f(y) ∣∣} · {w(y) ∣∣g(x)− g(y) ∣∣} dxdy ≤ 1 2 ( 1∫ 0 1∫ 0 wr(x) ∣∣f(x)− f(y) ∣∣r dxdy )1/r × ( 1∫ 0 1∫ 0 ws(y) ∣∣g(x)− g(y) ∣∣s dxdy )1/s . Estimating the increments of f and g by their LipL(α) de�nition, we conclude ∣∣T(w; f, g) ∣∣ ≤ LfLg 2 ( 1∫ 0 1∫ 0 wr(x)|x− y|αf r dxdy )1/r × ( 1∫ 0 1∫ 0 ws(y)|x− y|αgs dxdy )1/s . (2.6) Since 1∫ 0 |x− y|αf rdy = x∫ 0 (x− y)αf rdy + 1∫ x (y − x)αf rdy = 1 αfr + 1 ( xαf r+1 + (1− x)αf r+1 ) , the substitution of arguments leads us via (2.6) to the stated upper bound (2.4). Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 147 D. Jankov and T.K. Pog�any Now we will apply the result obtained to the weight function case closely connected to the Chebyshev�Saigo functional associated with the Saigo fractional integral operator. 3. Andreev�Korkin Identity for Chebyshev�Saigo Functional The Saigo hypergeometric fractional integral of the function f : R+ 7→ R is de�ned for all η > 0, σ ∈ R as Iρ,σ,η 0,t [ f ] =    tσ Γ(ρ) 1∫ 0 (1− x)ρ−1 2F1 [ ρ− σ,−η ρ ∣∣∣1− x ] f(tx)dx <(ρ) > 0 dn dtn Iρ+n,−σ−n,η−n 0,t [ f ] <(ρ) ≤ 0, n = [<(−ρ) ] + 1 , (3.1) where Γ(·) stands for the Euler gamma function, compare, for instance, [6, p. 104, De�nition 3.20]. The Riemann�Liouville and Erd�elyi�Kober fractional integration operators follow respectively as special cases of (3.1), viz. Iρ,ρ,η 0,t [ f ] = I ρ 0,t [ f ] = tρ Γ(ρ) 1∫ 0 (1− x)ρ−1 f(tx) dx <(ρ) > 0, (3.2) Iρ,0,η 0,t [ f ] = Iρ,η 0,t [ f ] = 1 Γ(ρ) 1∫ 0 (1− x)ρ−1xη f(tx) dx <(ρ), η > 0 . (3.3) The hypergeometric term in the Saigo operator's integrand is strictly positive [7, p. 35, Theorem 2, Eqs. (3.3), (3.4)] 2F1 [ ρ− σ, −η ρ ∣∣∣x ] > 0, x ∈ (0, 1) . Hence, for all σ > −1, the related weight function wS(x) = Γ(1 + σ)Γ(1 + ρ + η) Γ(ρ)Γ(1 + σ + η) (1− x)ρ−1 2F1 [ ρ− σ,−η ρ ∣∣∣1− x ] (3.4) is well-de�ned. Moreover, the associated weight functions, relative to the Riemann� Liouville and the Erd�elyi�Kober operators, are wRL(x) = ρ (1− x)ρ−1 ρ > 0, (3.5) wEK(x) = (1− x)ρ−1xη B(ρ, 1 + η) min{ρ, 1 + η} > 0, (3.6) 148 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 Andreev�Korkin Identity, Saigo Fractional Integration Operator respectively. Display (3.5) is obvious, while by virtue of the fact 2F1 [ ρ, −η ρ ∣∣∣ · ] = 1F0 [ −η − ∣∣∣ · ] = (1− ·)η , we deduce (3.6). (We point out that all three considered weight functions are independent of any scaling parameter t). Now we are ready to introduce the scaled integral mean associated with the Saigo fractional integral operator in the form Mt(wS ; f) := 1∫ 0 wS(x)f(tx) dx t > 0. (3.7) Of course t = 1, that is, M1 ≡ M gives a link to the integral mean (1.2). De�nition 3.1. The Chebyshev weighted scaled functionals TS(f, g) := Mt(wS ; fg)−Mt(wS ; f)Mt(wS ; g), (3.8) TRL(f, g) := Mt(wRL; fg)−Mt(wRL; f)Mt(wRL; g), (3.9) TEK(f, g) := Mt(wEK ; fg)−Mt(wEK ; f)Mt(wEK ; g) (3.10) we call, by convention, the Chebyshev�Saigo, the Riemann�Liouville and the Erd�elyi� Kober functionals, respectively, where Mt(w; ·) is given by (3.7). R e m a r k 2.1. The Chebyshev�Saigo functional was introduced in a some- what di�erent manner by Saxena et al. in [8, Eq. (2.8)]. Theorem 3.1. Let r, s, r−1+s−1 = 1, r > 1, be conjugated H�older parameters. Then for all f ∈ LipLf (αf ), g ∈ LipLg (αg) and min{t,<(ρ), η} > 0, σ ∈ R, we have ∣∣TS(f, g) ∣∣ ≤ LfLg Γ2(1 + σ) Γ2(1 + ρ + η) E1/r(r, αf ) E1/s(s, αg) 2 ( αfr + 1 )1/r( αgs + 1 )1/s Γ2(ρ) Γ2(1 + σ + η) tαf+αg , (3.11) where E(u, v) = 1∫ 0 xuv+1 { (1− x)u(ρ−1) 2F r 1 [ ρ− σ, −η ρ ∣∣∣ 1− x ] + xu(ρ−1) 2F r 1 [ ρ− σ, −η ρ ∣∣∣x ]} dx . P r o o f. A straightforward application of Theorem 2.1 results in (3.11). Indeed, following the lines of the proving procedure of Theorem 2.1 we have ∣∣TS(f, g) ∣∣ ≤ 1 2 1∫ 0 1∫ 0 { wS(x) ∣∣f(tx)− f(ty) ∣∣} · {wS(y) ∣∣g(tx)− g(ty) ∣∣} dxdy Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 149 D. Jankov and T.K. Pog�any ≤ 1 2 ( 1∫ 0 1∫ 0 wr S(x) ∣∣f(tx)− f(ty) ∣∣r dxdy )1/r × ( 1∫ 0 1∫ 0 ws S(y) ∣∣g(tx)− g(ty) ∣∣s dxdy )1/s =: U . Both f and g being Lipschitz, we may conclude U ≤ LfLg 2 ( 1∫ 0 1∫ 0 wr S(x)|x− y|αf r dxdy )1/r × ( 1∫ 0 1∫ 0 ws S(y)|x− y|αgs dxdy )1/s · tαf+αg . Now obvious further calculation leads to (3.11). The next results show how to reduce upper bounds for the modulus of the Chebyshev�Saigo functional to the bounds when the Saigo hypergeometric frac- tional integration operator is replaced by the Riemann�Liouville and the Erd�elyi� Kober operators. Corollary 3.1. Let r, s, r−1 + s−1 = 1, r > 1, be conjugated H�older para- meters. Then for all f ∈ LipLf (αf ), g ∈ LipLg (αg) and min{t,<(ρ)} > 0, we have ∣∣TRL(f, g) ∣∣ ≤ LfLg ρ2 G1/r(r, αf )G1/s(s, αf ) 2 ( αfr + 1 )1/r( αgs + 1 )1/s tαf+αg , (3.12) where G(u, v) = B(uv + 2, u(ρ− 1) + 1) + ( (v + ρ− 1)u + 2 )−1 . Corollary 3.2. Let r, s, r−1+s−1 = 1, r > 1, be conjugated H�older exponents. Then for all f ∈ LipLf (αf ), g ∈ LipLg (αg) and min{t,<(ρ), η} > 0, we have ∣∣TEK(f, g) ∣∣ ≤ LfLg H1/r(r, αf )H1/s(s, αg) 2 ( αfr + 1 )1/r( αgs + 1 )1/s B2(ρ, 1 + η) tαf+αg , (3.13) where H(u, v) = B ( (v + η)u + 2, u(ρ− 1) + 1 ) + B ( u(v + ρ− 1) + 2, ηu + 1 ) . 150 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 Andreev�Korkin Identity, Saigo Fractional Integration Operator 4. Further Bounds for the Chebyshev�Saigo Functional To get a more sophisticated bound for TS(f, g, ), we need an auxiliary upper bound inequality for the hypergeometric function appearing in the Saigo fractional integral operator. A similar upper bound was given by Carlson [7, p. 35, Theorem 2, Eqs. (2.13), (2.14)]: Lemma. Let c > b > 0 and x < 1, x 6= 0. Then 2F1 [ a, b c ∣∣∣x ] < { J a < −1, min { H, J1 } a ∈ (−1, 0), (4.1) where J := (1− b/c) + (b/c)(1− x)−a, H := ( 1− bx/c )−a , J1 := (b/c)(1− x)c−a−b + (1− b/c)(1− x)−b . If a ≤ c− 1, then min{H, J1} = H. In order to present the results, we need a de�nition of the Fox�Wright function pΨ∗ q which is a generalization of the familiar generalized hypergeometric function pFq [6, 9], pΨ∗ q [ (a1, A1), · · · , (ap, Ap) (b1, B1), · · · , (bq, Bq) ∣∣∣ z ] = pΨ∗ q [ (ap, Ap) (bq, Bq) ∣∣∣ z ] := ∞∑ n=0 ∏p j=1(aj)Ajn∏q j=1(bj)Bjn zn n! , (4.2) where (τ)T is the Pochhammer symbol (or shifted factorial), with (1)n = n!, n ∈ N0, de�ned in terms of gamma function by (τ)T = Γ(τ + T ) Γ(τ) = { 1 T = 0, τ ∈ C \ {0}, τ(τ + 1) · · · (τ + T − 1) T ∈ N, τ ∈ C, where, as understood conventionally, (0)0 := 1. In (4.2) aj , bk ∈ C, Aj , Bk > 0, j = 1, p, k = 1, q and ∆ = 1 + q∑ j=1 Bj − p∑ j=1 Aj ≥ 0 ; (4.3) for ∆ = 0 the convergence holds for suitably bounded values of |z|, given by |z| < ∇, where ∇ = q∏ j=1 B Bj j · p∏ j=1 A −Aj j . (4.4) Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 151 D. Jankov and T.K. Pog�any Theorem 4.1. Let r, s, r−1+s−1 = 1, r > 1, be conjugated H�older parameters. Then for all f ∈ LipLf (αf ), g ∈ LipLg (αg), 0 < σ < ρ < 2σ we have: (i) for η > 1, ∣∣TS(f, g) ∣∣ ≤ LfLg Γ2(1 + σ) Γ2(1 + ρ + η) I1/r(r, αf ) I1/s(s, αg) 2 ( αfr + 1 )1/r( αgs + 1 )1/s Γ2(ρ) Γ2(1 + σ + η) tαf+αg , (4.5) where I(u, v) := (σ ρ )u{ B(uv + 2, u(ρ− 1) + 1) 2Ψ∗ 1 [ (−u, 1), (uv + 2, η)( (v + ρ− 1)u + 3, η ) ∣∣∣ 1− ρ σ ] + 1 (v + ρ− 1)u + 2 2Ψ∗ 1 [ (−u, 1), (1, η)( (v + ρ− 1)u + 3, η ) ∣∣∣ 1− ρ σ ]} ; (ii) for η ∈ (0, 1), ∣∣TS(f, g) ∣∣ ≤ LfLg Γ2(1 + σ) Γ2(1 + ρ + η)J 1/r(r, αf )J 1/s(s, αg) 2 ( αfr + 1 )1/r( αgs + 1 )1/s Γ2(ρ) Γ2(1 + σ + η) tαf+αg , (4.6) where J (u, v) := (σ ρ )ηu B(uv + 2, u(ρ− 1) + 1) 2F1 [ −ηu, uv + 2 (v + ρ− 1)u + 3 ∣∣∣ 1− ρ σ ] + 1 (v + ρ− 1)u + 2 2F1 [ −ηu, (v + ρ− 1)u + 2 (v + ρ− 1)u + 3 ∣∣∣ 1− σ ρ ] . P r o o f. Taking a = −η, b = ρ − σ, c = ρ, the conditions of Lemma are ful�lled with 0 < σ < ρ, so by (4.1) we have 2F1 [ a, b c ; x ] < { σ/ρ + (1− σ/ρ)(1− x)η η > 1, min { H, J1 } η ∈ (0, 1), (4.7) where H = ( 1− (1− σ/ρ)x )η , J1 = (1− σ/ρ)(1− x)η+σ + (σ/ρ)(1− x)σ−ρ, and for η + σ ≥ 1 it is min{H, J1} = H. (i) η > 1. By (3.11) and (4.7), we conclude ∣∣TS(f, g) ∣∣ ≤ LfLgt αf+αg Γ2(1 + σ) Γ2(1 + ρ + η) 2 ( αfr + 1 )1/r( αgs + 1 )1/s Γ2(ρ) Γ2(1 + σ + η) 152 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 Andreev�Korkin Identity, Saigo Fractional Integration Operator × ( 1∫ 0 xαf r+1 { (1− x)r(ρ−1) ( σ/ρ + (1− σ/ρ)xη )r + xr(ρ−1) ( σ/ρ + (1− σ/ρ)(1− x)η )r } dx )1/r × ( 1∫ 0 xαgs+1 { (1− x)s(ρ−1) ( σ/ρ + (1− σ/ρ)xη )s + xs(ρ−1) ( σ/ρ + (1− σ/ρ)(1− x)η )s } dx )1/s . (4.8) Since I1(r) := 1∫ 0 xα−1(1− x)β−1(1 + γxδ)rdx = ∞∑ n=0 ( r n ) γn ∞∫ 0 xα+δn−1(1− x)β−1dx = Γ(β) ∞∑ n=0 (−r)nΓ(α + δn) Γ(α + β + δn) (−γ)n n! = B(α, β) ∞∑ n=0 (−r)n(α)δn (α + β)δn (−γ)n n! = B(α, β) · 2Ψ∗ 1 [ (−r, 1), (α, δ) (α + β, δ) ∣∣∣ − γ ] , (4.9) where B(·, ·) denotes the Eulerian beta function, and because I2(r) := 1∫ 0 xν−1(1 + γ(1− x)δ)rdx = ∞∑ n=0 ( r n ) γn ∞∫ 0 xν−1(1− x)δndx = Γ(ν) ∞∑ n=0 (−r)nΓ(1 + δn) Γ(ν + 1 + δn) (−γ)n n! = 1 ν ∞∑ n=0 (−r)n(1)δn (ν + 1)δn (−γ)n n! = 1 ν · 2Ψ∗ 1 [ (−r, 1), (1, δ) (ν + 1, δ) ∣∣∣ − γ ] , for δ > 0, in both cases ∆ = 1+δ−1− δ = 0, therefore the series I1,2(r) converge in the whole range of |γ| < ∇ = δδ · δ−δ = 1. Hence, the �rst integral in (4.8) becomes I(r, αf ) = (σ ρ )r{ B(αfr + 2, r(ρ− 1) + 1) 2Ψ∗ 1 [ (−r, 1), (αfr + 2, η)( (αf + ρ− 1)r + 3, η ) ∣∣∣ 1− ρ σ ] + 1 (αf + ρ− 1)r + 2 2Ψ∗ 1 [ (−r, 1), (1, η)( (αf + ρ− 1)r + 3, η ) ∣∣∣ 1− ρ σ ]} ; Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 153 D. Jankov and T.K. Pog�any both series converge for |1− ρ/σ| < 1, that is, in the assumed range σ < ρ < 2σ. By this conclusion the case (i) is proved. (ii) η ∈ (0, 1), η + σ ≥ 1. In this case H and J1 possess the common tangent x 7→ 1− η(1− σ/ρ)x at the origin. Being H ′′(x) = η(η − 1) ( 1−σ ρ )2( 1− (1− σ/ρ)x )η−2 < 0 J ′′1 (x) = ( 1−σ ρ ) (1− x)σ−ρ−2 [ (η + σ)(η + σ − 1)(1− x)η+ρ+σ(ρ + 1− σ) ] > 0 , we clearly conclude that H is concave and J1 is convex in the unit interval. Thus, it is min{H,J1} = H according to Carlson's Lemma too. Without condition η + σ ≥ 1, as mutatis mutandis min{H,J1} ≤ H, we conclude the case (ii) by (3.11). Now in both cases η ∈ (0, 1), σ > 0 and by (4.7) we have ∣∣TS(f, g) ∣∣ ≤ LfLg Γ2(1 + σ) Γ2(1 + ρ + η) 2 ( αfr + 1 )1/r( αgs + 1 )1/s Γ2(ρ) Γ2(1 + σ + η) tαf+αg × ( 1∫ 0 xαf r+1 { (1− x)r(ρ−1) ( σ/ρ + (1− σ/ρ)x)ηr + xr(ρ−1) ( 1− (1− σ/ρ)x )ηr } dx )1/r × ( 1∫ 0 xαgs+1 { (1− x)s(ρ−1) ( σ/ρ + (1− σ/ρ)x)ηs + xs(ρ−1) ( 1− (1− σ/ρ)x )ηs } dx )1/s , (4.10) and the �rst integral in (4.10) is equal to J (r, αf ) = (σ ρ )ηr B(αfr + 2, r(ρ− 1) + 1) 2F1 [ −ηr, αfr + 2 (αf + ρ− 1)r + 3 ∣∣∣ 1− ρ σ ] + 1 (αf + ρ− 1)r + 2 2F1 [ −ηr, (αf + ρ− 1)r + 2 (αf + ρ− 1)r + 3 ∣∣∣ 1− σ ρ ] , (4.11) where both hypergeometric series converge in the range of 0 < σ < ρ < 2σ. 154 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 Andreev�Korkin Identity, Saigo Fractional Integration Operator Indeed, we have J (r, αf ) = (σ ρ )ηr I1(ηr) + 1∫ 0 xα−1 ( 1− (1− σ/ρ)x )ηr dx = (σ ρ )ηr I1(ηr) + I3(r) , when in (4.9) one speci�es α = αfr + 2, β = r(ρ− 1) + 1, γ = ρ/σ − 1 and δ = 1, while further short calculation gives us I3(r) = ∞∑ n=0 ( ηr n ) (−1)n(1− σ/ρ)n (αf + ρ− 1)r + 2 + n . Using the transformation 1 A + n = Γ(A + n) Γ(A + 1 + n) = 1 A · (A)n (A + 1)n , where A = (αf + ρ− 1)r + 2, we conclude I3(r) = 1 (αf + ρ− 1)r + 2 ∞∑ n=0 (−ηr)n ( (αf + ρ− 1)r + 2 ) n( (αf + ρ− 1)r + 3 ) n (1− σ/ρ)n n! = 1 (αf + ρ− 1)r + 2 2F1 [ −ηr, (αf + ρ− 1)r + 2 (αf + ρ− 1)r + 3 ∣∣∣ 1− σ ρ ] . So is the proof of (4.12). Finally, let us present two more results in which we discuss the hypergeometric kernel function appearing in the Saigo fractional integration operator: the �rst with the integer value parameters ηr, ηs, where r, s form the conjugated H�older exponents, the second estimating functions H, J1 in Carlson's Lemma by uniform upper bound equal to 1 on the whole unit interval. Corollary 4.1. Let r, s, r−1 + s−1 = 1, r > 1, be conjugated H�older pa- rameters, η ∈ (0, 1), ηr, ηs ∈ N. Then for all f ∈ LipLf (αf ), g ∈ LipLg (αg), 0 < σ < ρ < 2σ we have ∣∣TS(f, g) ∣∣ ≤ LfLg Γ2(1 + σ) Γ2(1 + ρ + η)K1/r(r, αf )K1/s(s, αg) 2 ( αfr + 1 )1/r( αgs + 1 )1/s Γ2(ρ) Γ2(1 + σ + η) tαf+αg , (4.12) where K(u, v) := (σ ρ )ηu B(uv + 2, u(ρ− 1) + 1)Pηu ( 1− ρ σ ) + Qηu ( 1− σ/ρ ) (v + ρ− 1)u + 2 , Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 155 D. Jankov and T.K. Pog�any and Pηu(z) = 2F1 [ −ηu, uv + 2 (v + ρ− 1)u + 3 ∣∣∣ z ] = ηu∑ n=0 (−ηu)n(uv + 2)n( (v + ρ− 1)u + 3 ) n n! zn, Qηu(z) = 2F1 [ −ηu, (v + ρ− 1)u + 2 (v + ρ− 1)u + 3 ∣∣∣ z ] = ηu∑ n=0 (−ηu)n ( (v + ρ− 1)u + 2 ) n( (v + ρ− 1)u + 3 ) n n! zn are polynomials of degree ηu. P r o o f. Because ηr, ηs ∈ N, the hypergeometric functions 2F1 [ −ηu, uv + 2 (v + ρ− 1)u + 3 ∣∣∣ · ] , 2F1 [ −ηu, (v + ρ− 1)u + 2 (v + ρ− 1)u + 3 ∣∣∣ · ] reduce to the polynomials Pηr(·), Qηs(·) of degrees ηr, ηs, respectively. The claim now follows from Theorem 4.1, case (ii). Corollary 4.2. Let r, s, r−1 + s−1 = 1, r > 1, be conjugated H�older parame- ters. Then for all f ∈ LipLf (αf ), g ∈ LipLg (αg), 0 < σ < ρ < 2σ, η ∈ (0, 1), 1 + r(ρ− 1) > 0, 1 + s(ρ− 1) > 0 we have ∣∣TS(f, g) ∣∣ ≤ LfLg Γ2(1 + σ) Γ2(1 + ρ + η)N 1/r(r, αf )N 1/s(s, αg) 2 ( αfr + 1 )1/r( αgs + 1 )1/s Γ2(ρ) Γ2(1 + σ + η) tαf+αg , (4.13) where N (u, v) = B ( 2 + uv, 1 + u(ρ− 1) ) + 1 u(v + ρ− 1) + 2 . P r o o f. By virtue of the obvious estimate min{J1,H} ≤ 1, (4.13) is a direct consequence of Theorem 3.1 and Lemma. Acknowledgments. The authors are grateful to the anonymous reviewer for the useful advices and suggestions which signi�cantly improved the quality of the article, especially, remarking a lack in De�nition 3.1. 156 Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 Andreev�Korkin Identity, Saigo Fractional Integration Operator References [1] D.S. Mitrinovi�c and P.M. Vasi�c, History, Variations and Generalisations of the Chebyshev Inequality and the Question of Some Priorities. � Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 461�497 (1974), 1�30. [2] A.N. Korkin. On a certain de�nite integral. � Mat. Sbornik 10 (1882), 571�572. (Russian) [3] A.N. Korkin, Sur un th�eor�eme de M. Tchebychef. � C.R. Acad. Sci. Paris 96 (1883), 326�327. [4] D.S. Mitrinovi�c, J.E. Pe�cari�c, and A.M. Fink, Classical and New Inequalities in Analysis. Kluwer Acad. Publ., Dordrecht, 1993. [5] K.A. Andreev. A few words on the theorems of P.L. Chebyshev and V.G. Imshenet- skii about de�nite integrals of the product of functions. Soobshcheniya i protokoli zasedaniy Matematicheskogo obshchestva pri Imperatorskom Khar'kovskom Univer- sitete (1883), 110�123. (Russian) [6] A.M. Mathai, R.K. Saxena,and H.J. Haubold, The H-Function: Theory and Appli- cations. Springer, New York, 2010. [7] B.C. Carlson, Some Inequalities for Hypergeometric Functions. � Proc. Amer. Math. Soc. 17 (1966), 32�39. [8] R.K. Saxena, J. Ram, J. Daiya, and T.K. Pog�any, Inequalities Associated with Chebyshev Functional for Saigo Fractional Integration Operator. � Integral Tran- forms Spec. Funct. 22 (2011), 671�680. [DOI: 10.1080/10652469.2010.537267]. [9] H.M. Srivastava, K.C. Gupta, and S.P. Goyal, The H-Functions of One and Two Variables with Applications. South Asian Publishers, New Delhi, 1982. Journal of Mathematical Physics, Analysis, Geometry, 2012, vol. 8, No. 2 157