Spectral Problem Generated by the Equation of Smooth String with Piece-Wise Constant Friction

In the paper, the spectral problem generated by the Sturm-Liouville equation -y'' + q(x)y = (λ² - ip(x)λ)y, where q(x) is a real L₂(0, a)-function and p(x) is a peace-wise constant, is considered with the Dirichlet boundary conditions at the ends of the interval (0, a). The spectrum of the...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автор: Kobyakova, L.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2012
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/106724
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Spectral Problem Generated by the Equation of Smooth String with Piece-Wise Constant Friction / L. Kobyakova // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 3. — С. 280-295. — Бібліогр.: 19 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:In the paper, the spectral problem generated by the Sturm-Liouville equation -y'' + q(x)y = (λ² - ip(x)λ)y, where q(x) is a real L₂(0, a)-function and p(x) is a peace-wise constant, is considered with the Dirichlet boundary conditions at the ends of the interval (0, a). The spectrum of the problem is compared with the spectra of auxiliary problems with the Dirichlet-Dirichlet and the Dirichlet-Neumann boundary conditions on the halves of the interval. Asymptotic formulas are obtained for the eigenvalues of this problem.