An Application of Kadets-Pełczyński Sets to Narrow Operators
A known analogue of the Pitt compactness theorem for function spaces asserts that if 1 ≤ p < 2 and p < r < ∞, then every operator T : Lp → Lr is narrow. Using a technique developed by M.I. Kadets and A. Pełczyński, we prove a similar result. More precisely, if 1 ≤ p ≤ 2 and F is a Köthe {Ba...
Saved in:
Date: | 2013 |
---|---|
Main Authors: | Krasikova, I.V., Popov, M.M. |
Format: | Article |
Language: | English |
Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2013
|
Series: | Журнал математической физики, анализа, геометрии |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/106739 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | An Application of Kadets-Pełczyński Sets to Narrow Operators / I.V. Krasikova, M.M. Popov // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 1. — С. 102-107. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
An Application of Kadets-Pełczyński Sets to Narrow Operators
by: I. V. Krasikova, et al.
Published: (2013) -
Narrow Operators on Bochner L₁-Spaces
by: Boyko, K., et al.
Published: (2006) -
On the sum of narrow and finite-rank orthogonally additive operators
by: H. I. Humenchuk
Published: (2015) -
Generalized convex sets and their applications
by: M. V. Stefanchuk
Published: (2017) -
Application of laser-arc cladding for filling of narrow cavities in products of aluminium alloys
by: Ju. Khaskin
Published: (2009)