Conditions on a Surface F² is subset of Eⁿ to lie in E⁴

We consider a surface F² in Eⁿ with a non-degenerate ellipse of normal curvature whose plane passes through the corresponding surface point. The definition of three types of points is given in dependence of the position of the point relatively to the ellipse. If in the domain D is subset of F² all t...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Aminov, Yu.A., Nasiedkina, Ia.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2013
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/106742
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Conditions on a Surface F² is subset of Eⁿ to lie in E⁴ / Yu.A. Aminov, Ia. Nasiedkina // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 2. — С. 127-149. — Бібліогр.: 13 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We consider a surface F² in Eⁿ with a non-degenerate ellipse of normal curvature whose plane passes through the corresponding surface point. The definition of three types of points is given in dependence of the position of the point relatively to the ellipse. If in the domain D is subset of F² all the points are of the same type, then the domain D is said also to be of this type. This classification of points and domains is linked with the classification of partial differential equations of the second order. The theorems on the surface to lie in E⁴ are proved under the fulfilment of certain boundary conditions. Some examples of the surfaces are constructed to show that the boundary conditions of the theorems are essential.