Conditions on a Surface F² is subset of Eⁿ to lie in E⁴
We consider a surface F² in Eⁿ with a non-degenerate ellipse of normal curvature whose plane passes through the corresponding surface point. The definition of three types of points is given in dependence of the position of the point relatively to the ellipse. If in the domain D is subset of F² all t...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2013
|
Назва видання: | Журнал математической физики, анализа, геометрии |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/106742 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Conditions on a Surface F² is subset of Eⁿ to lie in E⁴ / Yu.A. Aminov, Ia. Nasiedkina // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 2. — С. 127-149. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-106742 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1067422016-10-05T03:02:03Z Conditions on a Surface F² is subset of Eⁿ to lie in E⁴ Aminov, Yu.A. Nasiedkina, Ia. We consider a surface F² in Eⁿ with a non-degenerate ellipse of normal curvature whose plane passes through the corresponding surface point. The definition of three types of points is given in dependence of the position of the point relatively to the ellipse. If in the domain D is subset of F² all the points are of the same type, then the domain D is said also to be of this type. This classification of points and domains is linked with the classification of partial differential equations of the second order. The theorems on the surface to lie in E⁴ are proved under the fulfilment of certain boundary conditions. Some examples of the surfaces are constructed to show that the boundary conditions of the theorems are essential. Рассмотрена поверхность F² в Eⁿ с невырожденным эллипсом нормальной кривизны, плоскость которого проходит через соответствующую точку поверхности. Дано определение трех типов точек на поверхности в зависимости от расположения точки относительно этого эллипса. Если в области D из F² все точки принадлежат одному типу, то говорим, что область D также принадлежит к этому типу. Эта классификация точек и областей оказывается связанной с классификацией дифференциальных уравнений в частных производных второго порядка. Доказаны теоремы о принадлежности поверхности к E⁴ при выполнении определенных краевых условий. Построены примеры поверхностей, показывающие, что краевые условия существенны. 2013 Article Conditions on a Surface F² is subset of Eⁿ to lie in E⁴ / Yu.A. Aminov, Ia. Nasiedkina // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 2. — С. 127-149. — Бібліогр.: 13 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106742 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
We consider a surface F² in Eⁿ with a non-degenerate ellipse of normal curvature whose plane passes through the corresponding surface point. The definition of three types of points is given in dependence of the position of the point relatively to the ellipse. If in the domain D is subset of F² all the points are of the same type, then the domain D is said also to be of this type. This classification of points and domains is linked with the classification of partial differential equations of the second order. The theorems on the surface to lie in E⁴ are proved under the fulfilment of certain boundary conditions. Some examples of the surfaces are constructed to show that the boundary conditions of the theorems are essential. |
format |
Article |
author |
Aminov, Yu.A. Nasiedkina, Ia. |
spellingShingle |
Aminov, Yu.A. Nasiedkina, Ia. Conditions on a Surface F² is subset of Eⁿ to lie in E⁴ Журнал математической физики, анализа, геометрии |
author_facet |
Aminov, Yu.A. Nasiedkina, Ia. |
author_sort |
Aminov, Yu.A. |
title |
Conditions on a Surface F² is subset of Eⁿ to lie in E⁴ |
title_short |
Conditions on a Surface F² is subset of Eⁿ to lie in E⁴ |
title_full |
Conditions on a Surface F² is subset of Eⁿ to lie in E⁴ |
title_fullStr |
Conditions on a Surface F² is subset of Eⁿ to lie in E⁴ |
title_full_unstemmed |
Conditions on a Surface F² is subset of Eⁿ to lie in E⁴ |
title_sort |
conditions on a surface f² is subset of eⁿ to lie in e⁴ |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/106742 |
citation_txt |
Conditions on a Surface F² is subset of Eⁿ to lie in E⁴ / Yu.A. Aminov, Ia. Nasiedkina // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 2. — С. 127-149. — Бібліогр.: 13 назв. — англ. |
series |
Журнал математической физики, анализа, геометрии |
work_keys_str_mv |
AT aminovyua conditionsonasurfacef2issubsetofentolieine4 AT nasiedkinaia conditionsonasurfacef2issubsetofentolieine4 |
first_indexed |
2023-10-18T20:13:36Z |
last_indexed |
2023-10-18T20:13:36Z |
_version_ |
1796149304559140864 |