Local and Global Stability of Compact Leaves and Foliations
The equivalence of the local stability of a compact foliation to the completeness and the quasi analyticity of its pseudogroup is proved. It is also proved that a compact foliation is locally stable if and only if it has the Ehresmann connection and the quasianalytic holonomy pseudogroup. Applicatio...
Збережено в:
Дата: | 2013 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2013
|
Назва видання: | Журнал математической физики, анализа, геометрии |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/106762 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Local and Global Stability of Compact Leaves and Foliations / N.I. Zhukova // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 3. — С. 400-420. — Бібліогр.: 37 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | The equivalence of the local stability of a compact foliation to the completeness and the quasi analyticity of its pseudogroup is proved. It is also proved that a compact foliation is locally stable if and only if it has the Ehresmann connection and the quasianalytic holonomy pseudogroup. Applications of these criterions are considered. In particular, the local stability of the complete foliations with transverse rigid geometric structures including the Cartan foliations is shown. Without assumption of the existence of an Ehresmann connection, the theorems on the stability of the compact leaves of conformal foliations are proved. Our results agree with the results of other authors. |
---|