2025-02-23T09:17:09-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-106765%22&qt=morelikethis&rows=5
2025-02-23T09:17:09-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-106765%22&qt=morelikethis&rows=5
2025-02-23T09:17:09-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T09:17:09-05:00 DEBUG: Deserialized SOLR response
Surfaces Given with the Monge Patch in E⁴
In the present paper we consider the surfaces in the Euclidean 4-space E⁴ given with a Monge patch z = f(u, v), w = g(u, v) and study the curvature properties of these surfaces. We also give some special examples of these surfaces first defined by Yu. Aminov. Finally, we prove that every Aminov surf...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2013
|
Series: | Журнал математической физики, анализа, геометрии |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/106765 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
irk-123456789-106765 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1067652016-10-05T03:02:20Z Surfaces Given with the Monge Patch in E⁴ Bulca, B. Arslan, K. In the present paper we consider the surfaces in the Euclidean 4-space E⁴ given with a Monge patch z = f(u, v), w = g(u, v) and study the curvature properties of these surfaces. We also give some special examples of these surfaces first defined by Yu. Aminov. Finally, we prove that every Aminov surface is a non-trivial Chen surface. Рассмотрены поверхности в четырехмерном евклидовом пространстве, заданные в представлении Монжа, z = f(u, v), w = g(u, v), и изучены их свойства кривизны. Также приведены некоторые примеры этих поверхностей, которые впервые ввел Ю.А. Аминов. Наконец доказано, что каждая поверхность Аминова является нетривиальной поверхностью Чена. 2013 Article Surfaces Given with the Monge Patch in E⁴ / B. Bulca, K. Arslan // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 4. — С. 435-44. — Бібліогр.: 18 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106765 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
In the present paper we consider the surfaces in the Euclidean 4-space E⁴ given with a Monge patch z = f(u, v), w = g(u, v) and study the curvature properties of these surfaces. We also give some special examples of these surfaces first defined by Yu. Aminov. Finally, we prove that every Aminov surface is a non-trivial Chen surface. |
format |
Article |
author |
Bulca, B. Arslan, K. |
spellingShingle |
Bulca, B. Arslan, K. Surfaces Given with the Monge Patch in E⁴ Журнал математической физики, анализа, геометрии |
author_facet |
Bulca, B. Arslan, K. |
author_sort |
Bulca, B. |
title |
Surfaces Given with the Monge Patch in E⁴ |
title_short |
Surfaces Given with the Monge Patch in E⁴ |
title_full |
Surfaces Given with the Monge Patch in E⁴ |
title_fullStr |
Surfaces Given with the Monge Patch in E⁴ |
title_full_unstemmed |
Surfaces Given with the Monge Patch in E⁴ |
title_sort |
surfaces given with the monge patch in e⁴ |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2013 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/106765 |
citation_txt |
Surfaces Given with the Monge Patch in E⁴ / B. Bulca, K. Arslan // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 4. — С. 435-44. — Бібліогр.: 18 назв. — англ. |
series |
Журнал математической физики, анализа, геометрии |
work_keys_str_mv |
AT bulcab surfacesgivenwiththemongepatchine4 AT arslank surfacesgivenwiththemongepatchine4 |
first_indexed |
2023-10-18T20:13:39Z |
last_indexed |
2023-10-18T20:13:39Z |
_version_ |
1796149306985545728 |