Local Minimizers of the Magnetic Ginzburg-Landau Functional with S¹-valued Order Parameter on the Boundary

It was shown in [L. Berlyand and V. Rybalko, Solution with Vortices of a Semi-Stiff Boundary Value Problem for the Ginzburg-Landau Equation, J. Eur. Math. Soc. 12 (2010), 1497{1531] that in doubly connected domains there exist local minimizers of the simplified Ginzburg-Landau functional with modulu...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2014
Автор: Rybalko, V.
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2014
Назва видання:Журнал математической физики, анализа, геометрии
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/106788
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Local Minimizers of the Magnetic Ginzburg-Landau Functional with S¹-valued Order Parameter on the Boundary / V. Rybalko // Журнал математической физики, анализа, геометрии. — 2014. — Т. 10, № 1. — С. 134-151. — Бібліогр.: 23 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:It was shown in [L. Berlyand and V. Rybalko, Solution with Vortices of a Semi-Stiff Boundary Value Problem for the Ginzburg-Landau Equation, J. Eur. Math. Soc. 12 (2010), 1497{1531] that in doubly connected domains there exist local minimizers of the simplified Ginzburg-Landau functional with modulus one and prescribed degrees on the boundary, unlike global minimizers that typically do not exist. We generalize the results and techniques of the aforementioned paper to the case of the magnetic Ginzburg-Landau functional.