Generalized Duality, Hamiltonian Formalism and New Brackets
It is shown that any singular Lagrangian theory: 1) can be formulated without the use of constraints by introducing a Clairaut-type version of the Hamiltonian formalism; 2) leads to a special kind of nonabelian gauge theory which is similar to the Poisson gauge theory; 3) can be treated as the many-...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2014
|
Назва видання: | Журнал математической физики, анализа, геометрии |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/106791 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Generalized Duality, Hamiltonian Formalism and New Brackets / S. Duplij // Журнал математической физики, анализа, геометрии. — 2014. — Т. 10, № 2. — С. 189-220. — Бібліогр.: 76 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-106791 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1067912016-10-06T03:02:17Z Generalized Duality, Hamiltonian Formalism and New Brackets Duplij, S. It is shown that any singular Lagrangian theory: 1) can be formulated without the use of constraints by introducing a Clairaut-type version of the Hamiltonian formalism; 2) leads to a special kind of nonabelian gauge theory which is similar to the Poisson gauge theory; 3) can be treated as the many-time classical dynamics. A generalization of the Legendre transform to the zero Hessian case is done by using the mixed(envelope/general) solution of the multidimensional Clairaut equation. The equations of motion are written in the Hamilton-like form by introducing new antisymmetric brackets. It is shown that any classical degenerate Lagrangian theory is equivalent to the many-time classical dynamics. Finally, the relation between the presented formalism and the Dirac approach to constrained systems is given. Показано, что любая сингулярная лагранжева теория: 1) может быть сформулирована без привлечения связей с помощью Клеро-версии гамильтонового формализма; 2) приводит к специальному виду неабелевой калибровочной теории, которая подобна пуассоновой калибровочной теории; 3) может быть сформулирована как многовременная классическая динамика. Обобщение преобразования Лежандра на случай нулевого гессиана проведено с использованием смешанного (обертывающего/общего) решения многомерного уравнения Клеро. Уравнения движения записываются в гамильтоновой форме с помощью введения новых антисимметричных скобок. Отмечено, что любая классическая система с вырожденным лагранжианом эквивалентна многовременной классической динамике. В заключение приведено взаимоотношение представленного формализма и теории связей Дирака. 2014 Article Generalized Duality, Hamiltonian Formalism and New Brackets / S. Duplij // Журнал математической физики, анализа, геометрии. — 2014. — Т. 10, № 2. — С. 189-220. — Бібліогр.: 76 назв. — англ. 1812-9471 http://dspace.nbuv.gov.ua/handle/123456789/106791 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
It is shown that any singular Lagrangian theory: 1) can be formulated without the use of constraints by introducing a Clairaut-type version of the Hamiltonian formalism; 2) leads to a special kind of nonabelian gauge theory which is similar to the Poisson gauge theory; 3) can be treated as the many-time classical dynamics. A generalization of the Legendre transform to the zero Hessian case is done by using the mixed(envelope/general) solution of the multidimensional Clairaut equation. The equations of motion are written in the Hamilton-like form by introducing new antisymmetric brackets. It is shown that any classical degenerate Lagrangian theory is equivalent to the many-time classical dynamics. Finally, the relation between the presented formalism and the Dirac approach to constrained systems is given. |
format |
Article |
author |
Duplij, S. |
spellingShingle |
Duplij, S. Generalized Duality, Hamiltonian Formalism and New Brackets Журнал математической физики, анализа, геометрии |
author_facet |
Duplij, S. |
author_sort |
Duplij, S. |
title |
Generalized Duality, Hamiltonian Formalism and New Brackets |
title_short |
Generalized Duality, Hamiltonian Formalism and New Brackets |
title_full |
Generalized Duality, Hamiltonian Formalism and New Brackets |
title_fullStr |
Generalized Duality, Hamiltonian Formalism and New Brackets |
title_full_unstemmed |
Generalized Duality, Hamiltonian Formalism and New Brackets |
title_sort |
generalized duality, hamiltonian formalism and new brackets |
publisher |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/106791 |
citation_txt |
Generalized Duality, Hamiltonian Formalism and New Brackets / S. Duplij // Журнал математической физики, анализа, геометрии. — 2014. — Т. 10, № 2. — С. 189-220. — Бібліогр.: 76 назв. — англ. |
series |
Журнал математической физики, анализа, геометрии |
work_keys_str_mv |
AT duplijs generalizeddualityhamiltonianformalismandnewbrackets |
first_indexed |
2023-10-18T20:13:42Z |
last_indexed |
2023-10-18T20:13:42Z |
_version_ |
1796149309200138240 |