2025-02-23T03:34:17-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-106808%22&qt=morelikethis&rows=5
2025-02-23T03:34:17-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-106808%22&qt=morelikethis&rows=5
2025-02-23T03:34:17-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T03:34:17-05:00 DEBUG: Deserialized SOLR response

Functional Models in De Branges Spaces of One Class Commutative Operators

For a commutative system of the linear bounded operators T₁, T₂, which operate in the Hilbert space H and none of the operators T₁, T₂ is a compression, the functional model is constructed. The model is built for a circle in de Branges space.

Saved in:
Bibliographic Details
Main Author: Syrovatskyi, V.N.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2014
Series:Журнал математической физики, анализа, геометрии
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/106808
Tags: Add Tag
No Tags, Be the first to tag this record!
id irk-123456789-106808
record_format dspace
spelling irk-123456789-1068082016-10-06T03:02:29Z Functional Models in De Branges Spaces of One Class Commutative Operators Syrovatskyi, V.N. For a commutative system of the linear bounded operators T₁, T₂, which operate in the Hilbert space H and none of the operators T₁, T₂ is a compression, the functional model is constructed. The model is built for a circle in de Branges space. Для коммутативной системы линейных ограниченных операторов T₁, T₂, которые действуют в гильбертовом пространстве H и ни один из операторов T₁, T₂ не является сжатием, построена функциональная модель. Эта модель строится в пространстве де Бранжа для круга. 2014 Article Functional Models in De Branges Spaces of One Class Commutative Operators / V.N. Syrovatskyi // Журнал математической физики, анализа, геометрии. — 2014. — Т. 10, № 4. — С. 430-450. — Бібліогр.: 9 назв. — англ. 1812-9471 DOI: http://dx.doi.org/10.15407/mag10.04.430 http://dspace.nbuv.gov.ua/handle/123456789/106808 en Журнал математической физики, анализа, геометрии Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description For a commutative system of the linear bounded operators T₁, T₂, which operate in the Hilbert space H and none of the operators T₁, T₂ is a compression, the functional model is constructed. The model is built for a circle in de Branges space.
format Article
author Syrovatskyi, V.N.
spellingShingle Syrovatskyi, V.N.
Functional Models in De Branges Spaces of One Class Commutative Operators
Журнал математической физики, анализа, геометрии
author_facet Syrovatskyi, V.N.
author_sort Syrovatskyi, V.N.
title Functional Models in De Branges Spaces of One Class Commutative Operators
title_short Functional Models in De Branges Spaces of One Class Commutative Operators
title_full Functional Models in De Branges Spaces of One Class Commutative Operators
title_fullStr Functional Models in De Branges Spaces of One Class Commutative Operators
title_full_unstemmed Functional Models in De Branges Spaces of One Class Commutative Operators
title_sort functional models in de branges spaces of one class commutative operators
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
publishDate 2014
url http://dspace.nbuv.gov.ua/handle/123456789/106808
citation_txt Functional Models in De Branges Spaces of One Class Commutative Operators / V.N. Syrovatskyi // Журнал математической физики, анализа, геометрии. — 2014. — Т. 10, № 4. — С. 430-450. — Бібліогр.: 9 назв. — англ.
series Журнал математической физики, анализа, геометрии
work_keys_str_mv AT syrovatskyivn functionalmodelsindebrangesspacesofoneclasscommutativeoperators
first_indexed 2023-10-18T20:13:45Z
last_indexed 2023-10-18T20:13:45Z
_version_ 1796149310990057472