Critical phenomena and critical dimensions in anisotropic nonlinear systems

The model that allows one to generalize the notions of the multicritical and Lifshitz points is considered. The model under consideration includes the higher powers and derivatives of order parameters. Critical phenomena in such systems were studied. We assess the lower and upper critical dimensions...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Babich, A.V., Berezovsky, S.V., Kitcenko, L.N., Klepikov, V.F.
Формат: Стаття
Мова:English
Опубліковано: Institute of Electrophysics and Radiation Technologies NAS of Ukraine 2012
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/107155
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Critical phenomena and critical dimensions in anisotropic nonlinear systems / A.V. Babich, S.V. Berezovsky, L.N. Kitcenko, V.F. Klepikov // Вопросы атомной науки и техники. — 2012. — № 1. — С. 268-272. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-107155
record_format dspace
spelling irk-123456789-1071552016-10-15T03:01:37Z Critical phenomena and critical dimensions in anisotropic nonlinear systems Babich, A.V. Berezovsky, S.V. Kitcenko, L.N. Klepikov, V.F. Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases The model that allows one to generalize the notions of the multicritical and Lifshitz points is considered. The model under consideration includes the higher powers and derivatives of order parameters. Critical phenomena in such systems were studied. We assess the lower and upper critical dimensions of these systems. These calculation enable us to find the fluctuation region where the mean field theory description does not work. Предложена модель, позволяющая обобщить понятия точек Лифшица и мультикритических точек. Предложенная модель учитывает в термодинамическом потенциале как высшие градиенты параметров порядка, так и высшие нелинейности. Рассчитаны верхняя и нижняя критические размерности для такой модели. Полученные результаты позволяют определить флуктуационную область, в которой приближение среднего поля не работает. Запропоновано модель, яка дозволяє узагальнити поняття точок Ліфшица и мультикритичних точок. Модель, що запропоновано, враховує в термодинамічному потенціалі як вищи градієнти параметрів порядку, так і вищи нелінійності. Розраховано верхню і нижчу критичні розмірності для такої моделі. Здобуті результати дозволяють визначити флуктуаційну область, в якій наближення середнього поля не дійсно. 2012 Article Critical phenomena and critical dimensions in anisotropic nonlinear systems / A.V. Babich, S.V. Berezovsky, L.N. Kitcenko, V.F. Klepikov // Вопросы атомной науки и техники. — 2012. — № 1. — С. 268-272. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 64.60.Kw, 64.60-i http://dspace.nbuv.gov.ua/handle/123456789/107155 en Вопросы атомной науки и техники Institute of Electrophysics and Radiation Technologies NAS of Ukraine
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases
Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases
spellingShingle Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases
Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases
Babich, A.V.
Berezovsky, S.V.
Kitcenko, L.N.
Klepikov, V.F.
Critical phenomena and critical dimensions in anisotropic nonlinear systems
Вопросы атомной науки и техники
description The model that allows one to generalize the notions of the multicritical and Lifshitz points is considered. The model under consideration includes the higher powers and derivatives of order parameters. Critical phenomena in such systems were studied. We assess the lower and upper critical dimensions of these systems. These calculation enable us to find the fluctuation region where the mean field theory description does not work.
format Article
author Babich, A.V.
Berezovsky, S.V.
Kitcenko, L.N.
Klepikov, V.F.
author_facet Babich, A.V.
Berezovsky, S.V.
Kitcenko, L.N.
Klepikov, V.F.
author_sort Babich, A.V.
title Critical phenomena and critical dimensions in anisotropic nonlinear systems
title_short Critical phenomena and critical dimensions in anisotropic nonlinear systems
title_full Critical phenomena and critical dimensions in anisotropic nonlinear systems
title_fullStr Critical phenomena and critical dimensions in anisotropic nonlinear systems
title_full_unstemmed Critical phenomena and critical dimensions in anisotropic nonlinear systems
title_sort critical phenomena and critical dimensions in anisotropic nonlinear systems
publisher Institute of Electrophysics and Radiation Technologies NAS of Ukraine
publishDate 2012
topic_facet Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases
url http://dspace.nbuv.gov.ua/handle/123456789/107155
citation_txt Critical phenomena and critical dimensions in anisotropic nonlinear systems / A.V. Babich, S.V. Berezovsky, L.N. Kitcenko, V.F. Klepikov // Вопросы атомной науки и техники. — 2012. — № 1. — С. 268-272. — Бібліогр.: 11 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT babichav criticalphenomenaandcriticaldimensionsinanisotropicnonlinearsystems
AT berezovskysv criticalphenomenaandcriticaldimensionsinanisotropicnonlinearsystems
AT kitcenkoln criticalphenomenaandcriticaldimensionsinanisotropicnonlinearsystems
AT klepikovvf criticalphenomenaandcriticaldimensionsinanisotropicnonlinearsystems
first_indexed 2023-10-18T20:14:33Z
last_indexed 2023-10-18T20:14:33Z
_version_ 1796149346006204416