Critical phenomena and critical dimensions in anisotropic nonlinear systems
The model that allows one to generalize the notions of the multicritical and Lifshitz points is considered. The model under consideration includes the higher powers and derivatives of order parameters. Critical phenomena in such systems were studied. We assess the lower and upper critical dimensions...
Збережено в:
Дата: | 2012 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Institute of Electrophysics and Radiation Technologies NAS of Ukraine
2012
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/107155 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Critical phenomena and critical dimensions in anisotropic nonlinear systems / A.V. Babich, S.V. Berezovsky, L.N. Kitcenko, V.F. Klepikov // Вопросы атомной науки и техники. — 2012. — № 1. — С. 268-272. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-107155 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1071552016-10-15T03:01:37Z Critical phenomena and critical dimensions in anisotropic nonlinear systems Babich, A.V. Berezovsky, S.V. Kitcenko, L.N. Klepikov, V.F. Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases The model that allows one to generalize the notions of the multicritical and Lifshitz points is considered. The model under consideration includes the higher powers and derivatives of order parameters. Critical phenomena in such systems were studied. We assess the lower and upper critical dimensions of these systems. These calculation enable us to find the fluctuation region where the mean field theory description does not work. Предложена модель, позволяющая обобщить понятия точек Лифшица и мультикритических точек. Предложенная модель учитывает в термодинамическом потенциале как высшие градиенты параметров порядка, так и высшие нелинейности. Рассчитаны верхняя и нижняя критические размерности для такой модели. Полученные результаты позволяют определить флуктуационную область, в которой приближение среднего поля не работает. Запропоновано модель, яка дозволяє узагальнити поняття точок Ліфшица и мультикритичних точок. Модель, що запропоновано, враховує в термодинамічному потенціалі як вищи градієнти параметрів порядку, так і вищи нелінійності. Розраховано верхню і нижчу критичні розмірності для такої моделі. Здобуті результати дозволяють визначити флуктуаційну область, в якій наближення середнього поля не дійсно. 2012 Article Critical phenomena and critical dimensions in anisotropic nonlinear systems / A.V. Babich, S.V. Berezovsky, L.N. Kitcenko, V.F. Klepikov // Вопросы атомной науки и техники. — 2012. — № 1. — С. 268-272. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 64.60.Kw, 64.60-i http://dspace.nbuv.gov.ua/handle/123456789/107155 en Вопросы атомной науки и техники Institute of Electrophysics and Radiation Technologies NAS of Ukraine |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases |
spellingShingle |
Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases Babich, A.V. Berezovsky, S.V. Kitcenko, L.N. Klepikov, V.F. Critical phenomena and critical dimensions in anisotropic nonlinear systems Вопросы атомной науки и техники |
description |
The model that allows one to generalize the notions of the multicritical and Lifshitz points is considered. The model under consideration includes the higher powers and derivatives of order parameters. Critical phenomena in such systems were studied. We assess the lower and upper critical dimensions of these systems. These calculation enable us to find the fluctuation region where the mean field theory description does not work. |
format |
Article |
author |
Babich, A.V. Berezovsky, S.V. Kitcenko, L.N. Klepikov, V.F. |
author_facet |
Babich, A.V. Berezovsky, S.V. Kitcenko, L.N. Klepikov, V.F. |
author_sort |
Babich, A.V. |
title |
Critical phenomena and critical dimensions in anisotropic nonlinear systems |
title_short |
Critical phenomena and critical dimensions in anisotropic nonlinear systems |
title_full |
Critical phenomena and critical dimensions in anisotropic nonlinear systems |
title_fullStr |
Critical phenomena and critical dimensions in anisotropic nonlinear systems |
title_full_unstemmed |
Critical phenomena and critical dimensions in anisotropic nonlinear systems |
title_sort |
critical phenomena and critical dimensions in anisotropic nonlinear systems |
publisher |
Institute of Electrophysics and Radiation Technologies NAS of Ukraine |
publishDate |
2012 |
topic_facet |
Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases |
url |
http://dspace.nbuv.gov.ua/handle/123456789/107155 |
citation_txt |
Critical phenomena and critical dimensions in anisotropic nonlinear systems / A.V. Babich, S.V. Berezovsky, L.N. Kitcenko, V.F. Klepikov // Вопросы атомной науки и техники. — 2012. — № 1. — С. 268-272. — Бібліогр.: 11 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT babichav criticalphenomenaandcriticaldimensionsinanisotropicnonlinearsystems AT berezovskysv criticalphenomenaandcriticaldimensionsinanisotropicnonlinearsystems AT kitcenkoln criticalphenomenaandcriticaldimensionsinanisotropicnonlinearsystems AT klepikovvf criticalphenomenaandcriticaldimensionsinanisotropicnonlinearsystems |
first_indexed |
2023-10-18T20:14:33Z |
last_indexed |
2023-10-18T20:14:33Z |
_version_ |
1796149346006204416 |