Transmission of wave packets through open mesoscopic systems

Tunneling of the wave packets having rectangular and Gaussian forms through a quantum diode is investigated. By using the potential of the system the S-matrix for this structure is obtained and the analytic expressions describing the form of the transmitted pulse are calculated. These analytic solut...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Ivanov, N., Skalozub, V.
Формат: Стаття
Мова:English
Опубліковано: Dnipropetrovsk National University 2012
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/107160
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Transmission of wave packets through open mesoscopic systems / N. Ivanov, V. Skalozub // Вопросы атомной науки и техники. — 2012. — № 1. — С. 292-295. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-107160
record_format dspace
spelling irk-123456789-1071602016-10-15T03:01:40Z Transmission of wave packets through open mesoscopic systems Ivanov, N. Skalozub, V. Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases Tunneling of the wave packets having rectangular and Gaussian forms through a quantum diode is investigated. By using the potential of the system the S-matrix for this structure is obtained and the analytic expressions describing the form of the transmitted pulse are calculated. These analytic solutions are compared with the numeric ones. An excellent coincidence is detected. The time-delay for the Gaussian pulse tunneling through the quantum dot is investigated in details. На основе решения уравнения Липпманна-Швингера для возмущенного потенциала рассчитывается матрица рассеяния туннельного диода. Используя формализм S-матрицы и модифицированный метод седловой точки, аналитически рассчитывается форма волнового пакета, выходящего из квантовой точки при подаче на нее пакетов гауссовой и прямоугольной форм. Найдена и проиллюстрирована зависимость времени задержки сигнала гауссовой формы при туннелировании для случая квантовой точки. На основі розв’язку рівняння Ліппманна-Швінгера для збуреного потенціалу розраховано матрицю розсіювання тунельного діоду. Користуючись формалізмом S-матриці та модифікованого методу сідлової точки, аналітично розраховується форма хвильового пакету, що виходить з квантової точки при подаванні на неї пакетів гауссової та прямокутної форм. Знайдено та проілюстровано залежність часу затримки сигналу гауссової форми при тунелюванні для випадку квантової точки. 2012 Article Transmission of wave packets through open mesoscopic systems / N. Ivanov, V. Skalozub // Вопросы атомной науки и техники. — 2012. — № 1. — С. 292-295. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 03.65.Pm, 03.65.Ge, 61.80.Mk http://dspace.nbuv.gov.ua/handle/123456789/107160 en Вопросы атомной науки и техники Dnipropetrovsk National University
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases
Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases
spellingShingle Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases
Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases
Ivanov, N.
Skalozub, V.
Transmission of wave packets through open mesoscopic systems
Вопросы атомной науки и техники
description Tunneling of the wave packets having rectangular and Gaussian forms through a quantum diode is investigated. By using the potential of the system the S-matrix for this structure is obtained and the analytic expressions describing the form of the transmitted pulse are calculated. These analytic solutions are compared with the numeric ones. An excellent coincidence is detected. The time-delay for the Gaussian pulse tunneling through the quantum dot is investigated in details.
format Article
author Ivanov, N.
Skalozub, V.
author_facet Ivanov, N.
Skalozub, V.
author_sort Ivanov, N.
title Transmission of wave packets through open mesoscopic systems
title_short Transmission of wave packets through open mesoscopic systems
title_full Transmission of wave packets through open mesoscopic systems
title_fullStr Transmission of wave packets through open mesoscopic systems
title_full_unstemmed Transmission of wave packets through open mesoscopic systems
title_sort transmission of wave packets through open mesoscopic systems
publisher Dnipropetrovsk National University
publishDate 2012
topic_facet Section E. Phase Transitions and Diffusion Processes in Condensed Matter and Gases
url http://dspace.nbuv.gov.ua/handle/123456789/107160
citation_txt Transmission of wave packets through open mesoscopic systems / N. Ivanov, V. Skalozub // Вопросы атомной науки и техники. — 2012. — № 1. — С. 292-295. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT ivanovn transmissionofwavepacketsthroughopenmesoscopicsystems
AT skalozubv transmissionofwavepacketsthroughopenmesoscopicsystems
first_indexed 2025-07-07T19:34:37Z
last_indexed 2025-07-07T19:34:37Z
_version_ 1837017992216444928
fulltext TRANSMISSION OF WAVE PACKETS THROUGH OPEN MESOSCOPIC SYSTEMS N. Ivanov∗and V. Skalozub Dnipropetrovsk National University, 49010, Dnipropetrovsk, Ukraine (Received October 31, 2011) Tunneling of the wave packets having rectangular and Gaussian forms through a quantum diode is investigated. By using the potential of the system the S-matrix for this structure is obtained and the analytic expressions describing the form of the transmitted pulse are calculated. These analytic solutions are compared with the numeric ones. An excellent coincidence is detected. The time-delay for the Gaussian pulse tunneling through the quantum dot is investigated in details. PACS: 03.65.Pm, 03.65.Ge, 61.80.Mk 1. INTRODUCTION The S-matrix formalism is commonly used in scat- tering theory for describing an association between a state after interaction with the one before interaction. This object contains a complete information on a sys- tem. For calculation of the S-matrix elements, either a perturbation theory is used or the methods based on studying of the S-matrix general characteristics are applied. The method for calculation of S-matrix elements was worked out in Ref. [1]. This approach is based on the establishing of the relationship be- tween the final state and the state before interaction, presented in terms of the solutions for the Lippmann- Shwinger equation with a perturbed potential. By splitting a system potential in the perturbed and un- perturbed parts and finding Green’s functions for the former part, one can construct a solution. It gives a possibility to find the R-matrix of the scattering sys- tem. After that, using the relation between R- and S-matrices, one is able to determine the values of the scattering matrix elements. The common feature of quantum dots, double- well diodes, quantum tunneling transistors is the ex- istence of potential wells with discreet energy levels. At the same time, this results in the resonance con- ductivities of these systems. The problem of the time- delay determination (for pulse tunneling) is very im- portant (see Refs. [2, 4]). Its solution, in particular, gives a possibility to find out for which parameters of the pulse or a quantum system the speed of the tunneling becomes maximal. Also it gives an oppor- tunity for miniaturization and increasing the produc- tivity of the microcircuit with quantum elements. It is reasonable to begin with determining the characteristics of a wave packet best related with the quantum system. The approach applied here is based on the S-matrix formalism and modified saddle point method developed in Refs. [1,3]. It completely formalizes the solution of the wave packet tunneling problem and gives a possibility to define the form and the time-delay for arbitrary-form wave packets tunneling through a quantum system with resonance levels. The parameters of tunneling have to be ex- pressed in terms of the incident pulse. Using the approach of Ref. [5] let us obtain the S-matrix for the diode, which energy potential is rep- resented in Fig. 1. Em-dE Em a+eU a I II III IV V VI 0 Z1 Z2Z4 Z3 Z +a eUI 2 E eФв Fig. 1. Potential energy of diode At first, we represent the potential eliminating the perturbation parts (from z1 to z3). Then we obtain the form of the diode potential (Fig. 2), In this way we split the potential in the perturbed ΔV (z) and unperturbed V0(z) parts, respectively. The wave functions for the scattering state coming from the left are: ∗Corresponding author E-mail address: na ivanov@dsu.dp.ua 292 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2012, N1. Series: Nuclear Physics Investigations (57), p.292-295. Em-dE Em a+eU a I II III IV V VI 0 Z1 Z2Z4 Z3 Z +a eUI 2 E eФв Fig. 2. Potential energy without perturbed parts ΨL 1 = eik1z + Ae−ik1z, z < 0, ΨL 2 = Beik2z + Ce−ik2z, 0 < z < z1, ΨL 3 = Deik3z + Ee−ik3z , z1 < z < z4, ΨL 4 = Feik4z + Ge−ik4z , z4 < z < z2, ΨL 5 = Heik5z + Ne−ik5z, z2 < z < z3, ΨL 6 = Meik6z , z3 < z, and for the one coming from the right are: ΨR 1 = e−ik6z + A′eik6z, z3 < z, ΨR 2 = B′e−ik5z + C′eik5z, z2 < z < z3, ΨR 3 = D′e−ik4z + E′eik4z , z4 < z < z2, ΨR 4 = F ′e−ik3z + G′eik3z , z1 < z < z4, ΨR 5 = H ′e−ik2z + N ′eik2z, 0 < z < z1, ΨR 6 = M ′e−ik1z, z < 0. Hence, by using the matching conditions we have found all the amplitudes for these states. Then we obtain the Green-functions which are so- lutions of inhomogeneous Shrödinger equation[ h̄2 2m∗ d2 dz2 − V0(z) + υ ] Γ(z, z′, υ) = δ(z − z′) (1) for all of the potential sections (υ is the particle en- ergy). The solution for the Shrödinger equation with initial potential can be represented as the superposi- tion of the unperturbed solution (Ψ0 = Ψ0(z, υ)) and the solution for the perturbation: Ψ = Ψ0 + ∫ dz′Γi(z, z′, υ)ΔV (z′)Ψ(z′, υ), (2) where i is a number of matching points and Γi(z, z′, υ) corresponds to a potential block Green- function. This equation represents the solution of the Lippmann-Shwinger equation. For each of this blocks we can obtained the transmission and reflec- tion coefficients taking into account the consecutive order of matching points and the corresponding to them Green’s functions. After that we use the well- known relationship between these coefficients and the S-matrix elements. In this way we find the S-matrix for the resonant system. 2. FORM OF THE TRANSMITTED WAVE-PACKET The incident and outgoing pulses are bound by the next expression: Ψout a = 1 2π ∑ b ∫ ∞ −∞ Ψin b Sb,adk, (3) which is integrated over all the k-space. The para- meters of the outgoing pulse wave function are: x is the coordinate variable, t is the time variable, k and k0 are momentum and center of incident wave packet in the momentum space. kj are the positions of S- matrix poles. We consider the incident pulse width a in the real space and all calculations will be realized in terms of the unperturbed pulse. Let us make use the next dimensionless variables: q′ = x a ; τ = t ta ; z = a(k − k0); lj = akj ; ρj = a Γj 2 ; l0 = ak0. Moreover, to simplify further expressions we intro- duce the parametrization: β = 1 + iτ 2 , q0j = l0 − lj + iρj , q = q′ − l0τ. (4) Here, the coordinate variable becomes q, time – τ , ta = ma2/h̄, lj and l0 are the localization poles and center of wave packet respectively, and ρj is the width of j-th resonance level. These variables give us a sufficient number of parameters to describe the wave packet tunneling through a quantum system with res- onance levels. Now we make use of a modified saddle- point method to obtain a transmitted solution [1]. Time interval τ after which we observe the outgoing wave packet should be larger than ta. This is the nec- essary condition for the existence of the resonance . A saddle point position is defined by the stationarity conditions: dg(z) dz = 0, �g(z) = const, (5) �g(z) < �g(zk), where zk is the k-th saddle point. The resulting part of the resonance wave function amplitude near the stationarity point is Ψ(q > 0, τ) ∼ 1 a eil0(q− 1 2 l0τ) × × ∑ jk egres j (xs k) √ − 1 egres′′ j (xs k) f res j (xs k). (6) This formula gives the asymptotic representation for the wave packet passed though a resonance quantum system. 293 3. TUNNELING OF PACKETS THROUGH A QUANTUM DOT Let us apply the developed method to investigate the tunneling of the squared-form wave packet through the quantum dot with one resonance level. The packet is described as the difference of two step- functions: Ψ(x) = Θ(x) − Θ(x − a), (7) where a is the packet width. We use the known Fourier-transform for Θ-function, obtained in Appen- dix (Eq. (14)). Applying the matching conditions (5) we find two saddle points. For outgoing wave packet, considering the two saddle points, we get superposi- tion of each result (Fig. 4). For the Gaussian-form in- cident wave packet tunneling through this quantum system, like in the case with square-form packet, we obtain (Fig. 3): Ψ(z) = Ψ0 exp(−z2/2), (8) where Ψ0 is the amplitude, Ψ(z) is the form of the incident wave packet. In this way the exponential argument becomes: g(z) = izq′ − βz2 − ln(z − q0). (9) Hence we find the saddle point: z1 = 1 2 ( q0 + iq′ 2β [ (q0 − iq′ 2β )2 − 1 2 ]1/2 ) . (10) For τ → ∞ with the accuracy up-to-the-second order we obtain: Ψres(q, τ) = iρjaj√ 2π e − (q−l0τ)2 2+2τ2 +i arg(Ψ) × (11) × (1 + τ2)1/4 [(q + ρi − liτ)2 + (ρiτ + li − l0)2]1/2 , where the argument is arg(Ψ) = 1 2 arctg(τ) + (q − l0τ)2τ 2 + 2τ2 − − arctg [ ρiτ + li − l0 q + ρi − liτ ] . (12) 0.005 0.010 0.015 0.020 0.025 0 50 100 150 200 250 q Fig. 3. Wave-function amplitude for the Gaus- sian pulse tunneling trough the quantum dot, for the saddle point method (dashed line) and an exact integration (continues line) for τ = 100, a1 = 1, l0 = l1 = 1, ρ = 0.09 0 0.02 0.04 0.06 0.08 20 40 60 80 100 120 140 q 0 20 40 60 80 100 120 140 q 0.5 0.4 0.3 0.2 0.1 Fig. 4. Amplitude for the step-form pulse tunneling trough the QD, for the saddle point method (dashed line) and an exact integration (continues line) for τ = 100, a1 = 1, l0 = l1 = 1, ρ = 0.04 (top) and ρ = 0.007 (bottom) 7.948 7.95 7.952 7.954 7.956 40 800 120 160 200 r0 0 Fig. 5. Time-delay for the Gaussian pulse trans- mission (dependency from energy level width) with a = 1, ta = 1, t = 100, x = 300, k0 = 1, ki = 1 The wave function of the outgoing pulse differs from the incident wave packet by some phase factor. This factor depends on the kinetic energy of the in- cident pulse, the potential energy of a barrier and time-delay. The delay can be calculated (Figs. 5-7) following Ref. [2]: �t = d arg(Ψ) dE . (13) Hence the advantage of analytic (asymptotic) meth- ods is obvious. The time-delay depends on the pulse and system parameters (the dependencies are shown in Figs. 5-7). 294 10 20 30 40 50 60 2 4 6 10 12 14 16 18 20 k 8 I Fig. 6. Time-delay for the Gaussian pulse trans- mission (dependency from s-matrix poles position) with ta = 1, t = 100, a = 1, x = 300, k0 = 1, Γ = 1 0 4 8 12 16 20 24 28 2 4 8 10 0k 6 Fig. 7. Time-delay for transmission gaussian pulse (dependency from incident pulse momentum) with ta = 1, t = 100, a = 1, x = 300, ki = 1, Γ = 1 4. CONCLUSIONS Tunneling of the wave-packets having the Gaussian and the rectangular form is investigated. The results obtained show that the usage of the S-matrix formal- ism and the saddle point method gives enough pa- rameters to describe the dynamics of the scattering processes. This approach gives a possibility to cal- culate a time-delay of the wave packet transmitting through quantum systems like quantum dots, double- well diodes, transistors. It was shown, in particular, that for some specific values of the system and the pulse parameters a full internal scattering is realized. This means that an outgoing pulse is absent, tunnel- ing does not happen. 5. APPENDIX For completeness, let us present the outgoing wave- function for the step-form pulse tunneling through the quantum dot: Ψ(q, τ) = 1 a √ 2π eil0(q− 1 2 l0τ) ∫ ∞ −∞ dz { a iz + πδ( z a )− − e−iz [ a iz + πδ( s a ) ]} eizq′−(β− 1 2 )z2 . (14) References 1. U. Wulf, V.V. Skalozub, and A. Zaharov. Multi-saddle-point approximation for pulse prop- agation in resonant tunneling // Phys. Rev. 2008, v. B77, p. 045318-045325. 2. M. Razavy. Quantum Theory of Tunneling. “World Scientific”, 2003, p. 351-375. 3. N.A. Ivanov, V.V. Skalozub. Propagation of wave packets through resonant quantum systems // Theoretical and Mathematical Physics. 2010, v. 168 (2), p. 1096-1104. 4. L. Brillouin. Wave Propagation and Group Ve- locity. New York: “Academic Press”, 1960. 5. P.N. Racec. Ph. D. Thesis. Cottbus: University of Technology, 2002. ��������� � ���� �� � ���� ����� �������� �������� ���� � � ����� ���� ������ � � ��� ���� �� ������ �� �� � ������� � ���������� ����� ��� ������������ ������ ��� ����� �������� ���� �� ������� � ����������� � ���� ��������� ������ �� ������ �� ��� � � ������� ��� ��� ������� ���! " ���� � ���! ����� �������� ����� ��������� ��!���" ��#������� � !������� ���! �� ������ �� ��� ��!���� �������� ������������ ����� �� ���� ��� ��$��� ������ ��� � ����� ������ �����%! � ����� �������� ����� �� ������ ����� ��� ������ !������� ���! � ����������� � ��� � � ���� ����� ���� �� ������������ � ���� ���� ������ � � ��� ���� �� �����& ����'��!� �&������ &����������&����� ��� �(������� ������&��� �����#����� ���� �$ ����&$����� ���������� �&���� )�� ���$� �� ������&���� ������ �& �� ��� �&!������� ������ �&�� ����* ���! " ����&� ��� �����#���+���� ����� #� ������� ��!���" �� � #�� �� � !�������* ���! �� ��������& �� ��* ��!��&� ��������* �� �����!����* ����� ,�� ���� �� ���&�$�������� ����%�&��� ���� ���� �! � ����� ��������* ���� �� �����$����& ��� � ���!� !�������* ���! � -./