Equivalent strain in simple shear of metals

We show that simple shear and pure shear form two groups of transformations with different properties. The equivalent strain is viewed as an external control parameter of the deformation process at low homologous temperatures. The von Mises strain satisfies group-theoretic properties of both groups,...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Beygelzimer, Y.
Формат: Стаття
Мова:English
Опубліковано: Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України 2015
Назва видання:Физика и техника высоких давлений
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/107388
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Equivalent strain in simple shear of metals / Y. Beygelzimer // Физика и техника высоких давлений. — 2015. — Т. 25, № 1-2. — С. 90-97. — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-107388
record_format dspace
spelling irk-123456789-1073882016-10-20T03:02:19Z Equivalent strain in simple shear of metals Beygelzimer, Y. We show that simple shear and pure shear form two groups of transformations with different properties. The equivalent strain is viewed as an external control parameter of the deformation process at low homologous temperatures. The von Mises strain satisfies group-theoretic properties of both groups, supporting its use for measuring the equivalent strain. On the other hand, the Hencky strain does not satisfy the simple shear group properties, implying that it is not appropriate for measuring the equivalent strain in simple shear. The paper also proposes a hypothesis explaining the absence of metal hardening in large simple shear deformations. This hypothesis explains why excluding rotations as prescribed by the finite strain theory is not valid. Показано, що простий і чистий зсуви утворюють дві групи перетворень з різними властивостями. Розглянуто еквівалентну деформацію як керуючий параметр процесу деформування. Показано, що деформація Von Mises задовольняє груповим властивостями і простого, і чистого зсуву, в той час як деформація Hencky не задовольняє груповим властивостям простого зсуву. На основі цього зроблено висновок про непридатність деформації Hencky в якості еквівалентної деформації простого зсуву. Висловлено й обґрунтовано гіпотезу про причину відсутності зміцнення металів при простому зсуві великої величини, яка пояснює, чому коректне (у рамках механіки кінцевих деформацій) виключення повороту, що відповідний кінцевому зсуву, призводить до невірного результату. Показано, что простой и чистый сдвиги образуют две группы преобразований с разными свойствами. Рассмотрена эквивалентная деформация как управляющий параметр процесса деформирования. Показано, что деформация Von Mises удовлетворяет групповым свойствам и простого, и чистого сдвигов, в то время как деформация Hencky не удовлетворяет групповым свойствам простого сдвига. На основе этого сделан вывод о непригодности деформации Hencky в качестве меры эквивалентной деформации простого сдвига. Высказана и обоснована гипотеза о причине отсутствия упрочнения металлов при простом сдвиге большой величины, которая объясняет, почему корректное (в рамках механики конечных деформаций) исключение поворота, соответствующего конечному сдвигу, приводит к неверному результату. 2015 Article Equivalent strain in simple shear of metals / Y. Beygelzimer // Физика и техника высоких давлений. — 2015. — Т. 25, № 1-2. — С. 90-97. — Бібліогр.: 28 назв. — англ. 0868-5924 PACS: 62.20.Fe http://dspace.nbuv.gov.ua/handle/123456789/107388 en Физика и техника высоких давлений Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We show that simple shear and pure shear form two groups of transformations with different properties. The equivalent strain is viewed as an external control parameter of the deformation process at low homologous temperatures. The von Mises strain satisfies group-theoretic properties of both groups, supporting its use for measuring the equivalent strain. On the other hand, the Hencky strain does not satisfy the simple shear group properties, implying that it is not appropriate for measuring the equivalent strain in simple shear. The paper also proposes a hypothesis explaining the absence of metal hardening in large simple shear deformations. This hypothesis explains why excluding rotations as prescribed by the finite strain theory is not valid.
format Article
author Beygelzimer, Y.
spellingShingle Beygelzimer, Y.
Equivalent strain in simple shear of metals
Физика и техника высоких давлений
author_facet Beygelzimer, Y.
author_sort Beygelzimer, Y.
title Equivalent strain in simple shear of metals
title_short Equivalent strain in simple shear of metals
title_full Equivalent strain in simple shear of metals
title_fullStr Equivalent strain in simple shear of metals
title_full_unstemmed Equivalent strain in simple shear of metals
title_sort equivalent strain in simple shear of metals
publisher Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України
publishDate 2015
url http://dspace.nbuv.gov.ua/handle/123456789/107388
citation_txt Equivalent strain in simple shear of metals / Y. Beygelzimer // Физика и техника высоких давлений. — 2015. — Т. 25, № 1-2. — С. 90-97. — Бібліогр.: 28 назв. — англ.
series Физика и техника высоких давлений
work_keys_str_mv AT beygelzimery equivalentstraininsimpleshearofmetals
first_indexed 2025-07-07T19:53:34Z
last_indexed 2025-07-07T19:53:34Z
_version_ 1837019184043655168
fulltext Физика и техника высоких давлений 2015, том 25, № 1–2 © Я. Бейгельзимер, 2015 PACS: 62.20.Fe Yan Beygelzimer EQUIVALENT STRAIN IN SIMPLE SHEAR OF METALS Received January 22, 2015 We show that simple shear and pure shear form two groups of transformations with different properties. The equivalent strain is viewed as an external control pa- rameter of the deformation process at low homologous temperatures. The von Mises strain satisfies group-theoretic properties of both groups, supporting its use for measuring the equivalent strain. On the other hand, the Hencky strain does not sat- isfy the simple shear group properties, implying that it is not appropriate for meas- uring the equivalent strain in simple shear. The paper also proposes a hypothesis explaining the absence of metal hardening in large simple shear deformations. This hypothesis explains why excluding rotations as prescribed by the finite strain theory is not valid. Keywords: simple shear, severe plastic deformation, equivalent strain, ultrafine grained materials Показано, що простий і чистий зсуви утворюють дві групи перетворень з різними властивостями. Розглянуто еквівалентну деформацію як керуючий параметр про- цесу деформування. Показано, що деформація Von Mises задовольняє груповим вла- стивостями і простого, і чистого зсуву, в той час як деформація Hencky не задо- вольняє груповим властивостям простого зсуву. На основі цього зроблено висновок про непридатність деформації Hencky в якості еквівалентної деформації простого зсуву. Висловлено й обґрунтовано гіпотезу про причину відсутності зміцнення ме- талів при простому зсуві великої величини, яка пояснює, чому коректне (у рамках механіки кінцевих деформацій) виключення повороту, що відповідний кінцевому зсуву, призводить до невірного результату. Ключові слова: простий зсув, інтенсивна пластична деформація, еквівалентна де- формація, ультрадрібнозернисті матеріали 1. Introduction Fueled by advances in severe plastic deformation [1], there has been much re- cent discussion about computing the equivalent strain e in simple shear. Since the increment of equivalent strain can be defined via the increment of plastic work, the authors of [2–5] argue for using the von Mises strain M 3 e γ = , (1) Физика и техника высоких давлений 2015, том 25, № 1–2 91 where γ is the shear strain. On the other hand, Onaka [6,7] argues that one must use the Hencky relation 1/ 22 H 2 ln 1 4 23 e ⎡ ⎤⎛ ⎞γ γ⎢ ⎥= + +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ . (2) The justification given by Onaka is the need to exclude rotations from the defor- mation-gradient tensor in large simple shear deformations. There is another line of reasoning that has led some authors (see, e.g., [8]) to formula (2). Starting with Ludwik [9], it has been widely believed that the same value of e guarantees essentially the same level of hardening, regardless of the deformation mode. Seen in this light, the estimate (1) is unreasonably high if one compares the hardening achieved by simple shear and that achieved by other de- formation modes (e.g., elongation). In [10], the equivalent strain is defined as a measure of hardening. This definition gives an expression for the equivalent strain in simple shear pre- dicting that e saturates at large values of γ. This saturation is in agreement with an empirically observed fact that, in large deformations caused by high pres- sure torsion, materials reach a stationary structure without hardening [11–13]. When viewed as a measure of hardening, the equivalent strain becomes a physical (instead of a geometric) parameter that depends on the material’s properties. Here we take a synergetics approach [14], viewing the equivalent strain as an external control parameter of the deformation process. Using group-theoretic properties of geometric transformations [15] and the principle of additivity, we show that the equivalent strain of simple shear must be linear in γ. This approach gives evidence in favor of using the von Mises strain for computing the equivalent strain in simple shear. The paper also proposes a hypothesis explaining the absence of metal hardening in large deformations caused by simple shear. This hypothesis ex- plains why excluding rotations as prescribed by the finite strain theory is not valid. 2. The von Mises strain and group theoretic properties of simple and pure shear We view the equivalent strain as an external scalar control parameter deter- mining the deformation process at low homologous temperatures. We will show that, for simple shear, such a control parameter must be a linear function in shear strain γ. For this, consider simple shear as a geometric transformation defined by relation =x SX , (3) where X and x are the initial and the final coordinates of a point, respectively; and Физика и техника высоких давлений 2015, том 25, № 1–2 92 1 0 0 1 0 0 0 1 γ⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ S (4) is the transformation operator. It is easily verified that the set of all simple shear transformations along a fixed shear direction satisfies the four axioms of group theory [15]. Indeed, consider two consecutive transformations (4) with shear strains γ1 and γ2 respectively: ( ) 1 1 1 1 0 0 1 0 0 0 1 γ⎡ ⎤ ⎢ ⎥= = γ⎢ ⎥ ⎢ ⎥⎣ ⎦ S S and ( ) 2 2 2 1 0 0 1 0 0 0 1 γ⎡ ⎤ ⎢ ⎥= = γ⎢ ⎥ ⎢ ⎥⎣ ⎦ S S . (5) It is clear that ( ) 2 1 1 2 2 1 1 2 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 γ γ γ + γ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = γ + γ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ S S S . (6) Thus a composition of two simple shear transformations along the same direction is a simple shear transformation along that direction, and the set defined by (4) satisfies the axiom of closure. Similarly, it is easy to see that (4) satisfies the asso- ciativity axiom, (S3(S2S1) = (S3S2)S1), contains the identity element I = S(0), and that for every transformation S(γ) it contains the inverse S–1(γ) = S(–γ) such that S–1(γ)S(γ) = I. We will associate each transformation S(γ) with the value of its characteristic control parameter, the equivalent strain es = es(γ), where the subscript «s» stands for «simple shear». Consider two consecutive simple shear transformations S(γ1) and S(γ2) with corresponding equivalent strains ( )1 1s se e= γ and ( )2 2s se e= γ . (7) It follows from (6) that the total shear is characterized by the equivalent strain ( )1 2s se eΣ = γ + γ . (8) On the other hand, the equivalent strain is additive [16]; this means that 1 2s s se e eΣ = + . (9) Plugging in expressions (7) and (8), we get ( ) ( ) ( )1 2 1 2s s se e eγ + γ = γ + γ . (10) A solution to this functional equation is a linear function (see, e.g., [17]): se C= γ , (11) for some constant C. Физика и техника высоких давлений 2015, том 25, № 1–2 93 To match the von Mises values at low equivalent strain [16], ( ) M 3se e γ γ = = yielding 1 3 C = . The derivation of relation (11) does not require γ to be small, and so 1 3se = γ is valid for any value of γ, agreeing with equation (1). This linear dependence of the equivalent strain from γ follows from group- theoretic properties of simple shear and the additivity of the equivalent strain. A similar argument gives a logarithmic dependence in the case of constant-volume pure shear. Indeed, the transformation operator in this case has the form ( ) 1 0 0 0 0 0 0 1 − λ⎡ ⎤ ⎢ ⎥ λ = λ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ P , (12) where λ is the relative elongation. One can easily verify that the set of pure shear transformations forms a group whose elements satisfy the relation ( ) ( ) ( )2 1 2 1λ λ = λ λP P P . (13) Unlike the analogous relation for simple shear (6), it is nonlinear in the sense that the parameter of the total transformation is the product instead of the sum of the two components. It is this difference in group-theoretic properties of simple and pure shear that leads to a different dependence of the equivalent strain from γ in these processes. It follows from relation (13) and the additivity property that the equivalent strain ep (where p refers to «pure shear») satisfies equation ( ) ( ) ( )1 2 1 2p p pe e eλ + λ = λ λ (14) instead of equation (10) as in the case of simple shear. A solution of this functional equation is the logarithm function (see, e.g., [17]): ( ) lnpe Kλ = λ , (15) where K is a constant. This dependence of the equivalent strain on the relative elongation corresponds to an expression for the von Mises strain, which is determined by the following formula [16] in the case of pure shear ( )M 2 ln 3 e λ = λ . (16) In this case, the von Mises strain follows from group-theoretic properties and the additivity principle again. Физика и техника высоких давлений 2015, том 25, № 1–2 94 3. Discussion The previous section argued for using the von Mises strain in both pure and simple shear, without relying on any model of the material and without making any assumptions on the shear strain. Thus the von Mises strain can be used as a control parameter not only in the case of isotropic bodies where deM defines the incremental work, but also in other settings – for example, in anisotropic bodies [16] or in the case of strain gradient plasticity [18]. Two questions arise in light of Section 2 and the discussion [2–8]: 1. Why does strain hardening in simple shear differ substantially from that in pure shear, for the same value of the von Mises strain, when the von Mises strain becomes sufficiently large? 2. Why does excluding rotations, as dictated by the finite strain theory, lead to a wrong result? To answer these questions, we will first try to answer the contrapositive of question 1: a polycrystal specimen represents a system with multitudinous degrees of freedom. So why does a single scalar control parameter determine hardening and the average grain size (at relatively small equivalent strains and low homolo- gous temperatures)? This is surprising, like other examples of simple behavior in complex systems, such as turbulent flows in liquids. Kolmogorov [19] hypothesized the structural self-similarity of turbulent flows and its defining scaling laws. Barenblatt [20] gave other examples of simple be- havior of complex systems related to their self-similarity. We believe that the an- swer to the contrapositive lies precisely in the self-similarity of metal structure evolution during deformation. Such self-similarity has been observed experimen- tally for sufficiently large strains (see, for example, [21]). It is also the self- similarity that is responsible for the power low ( )f eσ = (17) of the equivalent stress σ from the equivalent strain e, repeatedly confirmed in experiments (see, e.g., [16]). In other words, the stress-strain curve is an expres- sion of scaling behavior, which is common to all self-similar processes according to [20]. We will show that f(e) is an power low during the self-similar stage of micro- structure evolution. Consider three consecutive states of the system, specified by ( )1 1;e σ , ( )2 2;e σ , and ( )3 3;e σ . Since the evolution of metal structure is self- similar, the estimate (17) is invariant with respect to the choice of unit for meas- uring e. Let us first choose e1 as the unit measure. Then f(e) must have the fol- lowing form: ( ) 1 1 ef e e ⎛ ⎞ = σ ϕ⎜ ⎟ ⎝ ⎠ , (18) where ϕ(1) = 1. For states ( )2 2;e σ and ( )3 3;e σ , according to (18), we get Физика и техника высоких давлений 2015, том 25, № 1–2 95 2 2 1 1 e e ⎛ ⎞σ = ϕ⎜ ⎟σ ⎝ ⎠ , (19) 3 3 1 1 e e ⎛ ⎞σ = ϕ⎜ ⎟σ ⎝ ⎠ , (20) If we choose e2 as our unit measure, a similar argument will lead to the following relation 3 3 2 2 e e ⎛ ⎞σ = ϕ⎜ ⎟σ ⎝ ⎠ . (21) Multiplying (19) and (21) and comparing with (20), we get 3 3 2 1 2 1 e e e e e e ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ϕ = ϕ ϕ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ . (22) This implies that ϕ(x) satisfies the following equation ( ) ( ) ( )1 2 1 2x x x xϕ = ϕ ϕ , (23) A solution to such an equation is a power law (see, for example, [17]): ( ) nx xϕ = , (24) where n is a parameter. Thus nAeσ = , (25) where A is a parameter. Grain refinement can be viewed as recursive grain subdivision [22]. Kol- mogorov [23] investigated a fairly general model of recursive particle subdivision, showing that self-similar structures emerged at a certain stage of this process, when the subdivision mechanism was constant and scale-invariant. Other research [21,24–26] showed the universality and scale-invariance of grain refinement dur- ing plastic deformation. This fact leads to the conclusion that as long as the de- formation mechanism is unchanged, the metal structure will evolve in a self- similar manner, resulting in a universal power low stress-strain curve. Thus a de- viation from this curve must be related to a change in the deformation mechanism. Papers [10,27] make a case for a hypothesis that a certain percolation mecha- nism sets in during simple shear. This mechanism explains the lack of deforma- tion hardening (question 1 above) and the formation of a stationary microstructure observed experimentally [11–13], as well as a number of other phenomena in large simple shear deformations [28]. We believe, the answer to question 2 is related to the same percolation mecha- nism. According to [27], this mechanism is of relaxation nature, periodically re- lieving internal stress via small rotations of grain clusters. This process allows the material to repair its structure. This way, the deformed material guarantees a sta- tionary character of transformation (4) expressed using property (6). Large simple Физика и техника высоких давлений 2015, том 25, № 1–2 96 shear deformations are realized as a sum of small independent steps, explaining the special character of rotations in this setting. 4. Conclusion Simple and pure shear deformations form two groups of geometric transforma- tions with different properties. The von Mises strain satisfies group-theoretic properties of both simple and pure shear. The Hencky strain, on the other hand, does not satisfy the properties of the simple shear group. This brings evidence that the von Mises strain is the correct measure of the equivalent strain in simple shear. Since the von Mises strain is justified using group-theoretic arguments, without replying on any model of the material, this points to the applicability of the von Mises strain as a control parameter not only in isotropic bodies but in other set- tings as well. 1. R.Z. Valiev, I. Sabirov, A.P. Zhilyaev, and T.G. Langdon, JOM: The Journal of the Minerals, Metals, and Materials Society 64, 1134 (2012). 2. S.C. Shrivastava, J.J. Jonas, and G. Canova, Journal of the Mechanics and Physics of Solids 30, 75 (1982). 3. J.J. Jonas, C. Ghosh, and S. Shrivastava, Mater. Trans. 52, 1748 (2011). 4. S. Shrivastava, C. Ghosh, and J.J. Jonas, Philosophical Magazine 92, 779 (2012). 5. J. Jonas, C. Ghosh, V. Basabe, and S. Shrivastava, Philosophical Magazine 92, 2313 (2012). 6. S. Onaka, Philosophical Magazine Letters 90, 633 (2010). 7. S. Onaka, Philosophical Magazine 92, 2264 (2012). 8. I. Saunders and J. Nutting, Met. Sci. 18, 571 (1984). 9. P. Ludwik, Element der technologishen mechanik, Springer, Berlin (1909). 10. Y. Beygelzimer, R.Z. Valiev, and V. Varyukhin, Mater. Sci. Forum 667–669, 97 (2011). 11. R. Pippan, F. Wetscher, M. Hafok, A. Vorhauer, and I. Sabirov, Advanced Engi- neering Materials 8, 1046 (2006). 12. R. Pippan, S. Scheriau,A. Taylor, M. Hafok, A. Hohenwarter, and A. Bachmaier, An- nual Review of Materials Research 40, 319 (2010). 13. A. Bachmaier, M. Hafok, R. Schuster, and R. Pippan, Rev. Adv. Mater. Sci. 25, 16 (2010). 14. H. Haken, Synergetics, an Introduction: Nonequilibrium Phase Transitions and Self- Organization in Physics, Chemistry, and Biology, 3rd rev. enl. ed., Springer-Verlag, New York (1983). 15. R. McWeeny, Symmetry: An Introduction to Group Theory and Its Applications (Do- ver Books on Physics), Dover Publications (2002). 16. R. Hill, The Mathematical Theory of Plasticity, Clarendon Press, Oxford (1998). 17. C.G. Small, Functional Equations and How to Solve Them (Problem Books in Mathematics), Springer, New York (2006). 18. N.A. Fleck, J.W. Hutchinson, Journal of the Mechanics and Physics of Solids 49, 2245 (2001). Физика и техника высоких давлений 2015, том 25, № 1–2 97 19. A.N. Kolmogorov, Proc. R. Soc. Lond. A434, 9 (1991). 20. G.I. Barenblatt, Scaling, Self-similarity, and Intermediate Asymptotics, Cambridge University Press (1996). 21. D.A. Hughes and N. Hansen, Acta Mater. 45, 3871 (1997). 22. Y. Beygelzimer, Mechanics of Materials 37, 753 (2005). 23. A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 31, 99 (1941) (in Russian). 24. D. Kulhmann-Wilsdorf and N. Hansen, Scripta Metall. Mater. 25, 1557 (1991). 25. H.W. Zhang, X. Huang, and N. Hansen, Acta Mater. 56, 5451 (2008). 26. N. Hansen, X. Huang, and G. Winther, Mater. Sci. Eng. A494, 61 (2008). 27. Y. Beygelzimer and N. Lavrinenko, e-print (2012) arXiv:1206.5055v1 [cond-mat.mtrl-sci]. Available at http://arxiv.org/abs/1206.5055. 28. Y. Beygelzimer, Mater. Sci. Forum 683, 213 (2011). Я. Бейгельзимер ЭКВИВАЛЕНТНАЯ ДЕФОРМАЦИЯ ПРИ ПРОСТОМ СДВИГЕ МЕТАЛЛОВ Показано, что простой и чистый сдвиги образуют две группы преобразований с разными свойствами. Рассмотрена эквивалентная деформация как управляющий параметр процесса деформирования. Показано, что деформация Von Mises удовле- творяет групповым свойствам и простого, и чистого сдвигов, в то время как дефор- мация Hencky не удовлетворяет групповым свойствам простого сдвига. На основе этого сделан вывод о непригодности деформации Hencky в качестве меры эквива- лентной деформации простого сдвига. Высказана и обоснована гипотеза о причине отсутствия упрочнения металлов при простом сдвиге большой величины, которая объясняет, почему корректное (в рамках механики конечных деформаций) исклю- чение поворота, соответствующего конечному сдвигу, приводит к неверному ре- зультату. Ключевые слова: простой сдвиг, интенсивная пластическая деформация, эквива- лентная деформация, ультрамелкозернистые материалы