Тензор Грина кристаллов гексагональной системы
Метод построения тензора Грина для основного уравнения теории упругости в случае анизотропной среды, предложенный И.М. Лифшицем и Л.Н. Розенцвейгом, в принципе, сводится к вычетам и подразумевает нахождение корней (полюсов) некоторого алгебраического уравнения шестой степени. В зависимости от значен...
Збережено в:
Дата: | 2012 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2012
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/109032 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Тензор Грина кристаллов гексагональной системы / П.Н. Остапчук // Вопросы атомной науки и техники. — 2012. — № 5. — С. 40-45. — Бібліогр.: 8 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | Метод построения тензора Грина для основного уравнения теории упругости в случае анизотропной среды, предложенный И.М. Лифшицем и Л.Н. Розенцвейгом, в принципе, сводится к вычетам и подразумевает нахождение корней (полюсов) некоторого алгебраического уравнения шестой степени. В зависимости от значений упругих модулей кристалла эти полюсы могут быть комплексными либо чисто мнимыми. В работе компоненты тензора Грина кристаллов гексагональной системы получены в общем виде, справедливом как для мнимых, так и для комплексных полюсов. В отличие от металлов кубической сингонии результат является точным. Показан предельный переход к изотропному приближению. |
---|