RА discharge dynamics with passing over l- and H-like mode states in the URAGAN-3M torsatron

In the l=3 Uragan-3M torsatron a hydrogen plasma with the density ¬ne ~ 2×10¹² cm⁻³ is produced and heated by RF fields in the ω ≤ ωсi range of frequencies with using a frame-like antenna. Time variations are considered of (1) density ne and electron cyclotron emission at different values of the RF...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Chechkin, V.V., Pankratov, I.M., Grigor’eva, L.I., Beletskii, А.А., Kasilov, A.A., Burchenko, P.Ya., Lozin, А.V., Tsybenko, S.А., Slavnyj, А.S., Litvinov, A.P., Kulaga, А.Ye., Pavlichenko, R.O., Zamanov, N.V., Mironov, Yu.K., Romanov, V.S., Pashnev, V.K., Maznichenko, S.M., Volkov, Ye.D.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2012
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/109081
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:RА discharge dynamics with passing over l- and H-like mode states in the URAGAN-3M torsatron / V.V. Chechkin, I.M. Pankratov, L.I. Grigor’eva, А.А. Beletskii, A.A. Kasilov, P.Ya. Burchenko, А.V. Lozin, S.А. Tsybenko, А.S. Slavnyj, A.P. Litvinov, А.Ye. Kulaga, R.O. Pavlichenko, N.V. Zamanov, Yu.K. Mironov, V.S. Romanov, V.K. Pashnev, S.M. Maznichenko, Ye.D. Volkov // Вопросы атомной науки и техники. — 2012. — № 6. — С. 3-7. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-109081
record_format dspace
spelling irk-123456789-1090812018-03-21T12:35:10Z RА discharge dynamics with passing over l- and H-like mode states in the URAGAN-3M torsatron Chechkin, V.V. Pankratov, I.M. Grigor’eva, L.I. Beletskii, А.А. Kasilov, A.A. Burchenko, P.Ya. Lozin, А.V. Tsybenko, S.А. Slavnyj, А.S. Litvinov, A.P. Kulaga, А.Ye. Pavlichenko, R.O. Zamanov, N.V. Mironov, Yu.K. Romanov, V.S. Pashnev, V.K. Maznichenko, S.M. Volkov, Ye.D. Магнитное удержание In the l=3 Uragan-3M torsatron a hydrogen plasma with the density ¬ne ~ 2×10¹² cm⁻³ is produced and heated by RF fields in the ω ≤ ωсi range of frequencies with using a frame-like antenna. Time variations are considered of (1) density ne and electron cyclotron emission at different values of the RF power fed to the antenna; (2) fast ion generation and loss; (3) edge electric field Er and edge turbulent transport. Obtained results are of importance for (1) subsequent production and heating of denser plasmas; (2) understanding of processes resulting in the observed transition to the H-like confinement mode. В трехзаходном торсатроне У-3М водородная плазма с плотностью ¬ne ~2×10¹² cm⁻³ создаётся и нагревается ВЧ-полями в области частот ω ≤ ωсi с использованием рамочной антенны. Рассмотрены изменения во времени: 1) плотности ne и электронного циклотронного излучения при различных значениях ВЧ-мощности, подводимой к антенне; 2) генерации быстрых ионов и их потерь; 3) краевого электрического поля Еr и краевого турбулентного пeреноса. Полученные результаты важны для последующего получения и нагрева более плотной плазмы и понимания процессов, приводящих к переходу в Н-подобную моду удержания. У тризаходному торсатроні У-3М воднева плазма зі щільністю ¬ne ~2×10¹² cm⁻³ створюється і нагрівається ВЧ-полями в області частот ω ≤ ωсi з використанням рамкової антени. Розглянуті часові зміни: 1) густини ne та електронного циклотронного випромінювання при різних значеннях ВЧ-потужності, що підводиться до антени; 2) генерації швидких іонів та їх втрат; 3) крайового електричного поля Еr та крайового турбулентного переносу. Одержані результати важливі для подальшого створення та нагріву більш щільної плазми і розуміння процесів, що призводять до переходу в Н-подібну моду утримання. 2012 Article RА discharge dynamics with passing over l- and H-like mode states in the URAGAN-3M torsatron / V.V. Chechkin, I.M. Pankratov, L.I. Grigor’eva, А.А. Beletskii, A.A. Kasilov, P.Ya. Burchenko, А.V. Lozin, S.А. Tsybenko, А.S. Slavnyj, A.P. Litvinov, А.Ye. Kulaga, R.O. Pavlichenko, N.V. Zamanov, Yu.K. Mironov, V.S. Romanov, V.K. Pashnev, S.M. Maznichenko, Ye.D. Volkov // Вопросы атомной науки и техники. — 2012. — № 6. — С. 3-7. — Бібліогр.: 19 назв. — англ. 1562-6016 PACS: 52.25.Fi, 52.55.Hc, 52.55.Pi, 52.70.Pi http://dspace.nbuv.gov.ua/handle/123456789/109081 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Магнитное удержание
Магнитное удержание
spellingShingle Магнитное удержание
Магнитное удержание
Chechkin, V.V.
Pankratov, I.M.
Grigor’eva, L.I.
Beletskii, А.А.
Kasilov, A.A.
Burchenko, P.Ya.
Lozin, А.V.
Tsybenko, S.А.
Slavnyj, А.S.
Litvinov, A.P.
Kulaga, А.Ye.
Pavlichenko, R.O.
Zamanov, N.V.
Mironov, Yu.K.
Romanov, V.S.
Pashnev, V.K.
Maznichenko, S.M.
Volkov, Ye.D.
RА discharge dynamics with passing over l- and H-like mode states in the URAGAN-3M torsatron
Вопросы атомной науки и техники
description In the l=3 Uragan-3M torsatron a hydrogen plasma with the density ¬ne ~ 2×10¹² cm⁻³ is produced and heated by RF fields in the ω ≤ ωсi range of frequencies with using a frame-like antenna. Time variations are considered of (1) density ne and electron cyclotron emission at different values of the RF power fed to the antenna; (2) fast ion generation and loss; (3) edge electric field Er and edge turbulent transport. Obtained results are of importance for (1) subsequent production and heating of denser plasmas; (2) understanding of processes resulting in the observed transition to the H-like confinement mode.
format Article
author Chechkin, V.V.
Pankratov, I.M.
Grigor’eva, L.I.
Beletskii, А.А.
Kasilov, A.A.
Burchenko, P.Ya.
Lozin, А.V.
Tsybenko, S.А.
Slavnyj, А.S.
Litvinov, A.P.
Kulaga, А.Ye.
Pavlichenko, R.O.
Zamanov, N.V.
Mironov, Yu.K.
Romanov, V.S.
Pashnev, V.K.
Maznichenko, S.M.
Volkov, Ye.D.
author_facet Chechkin, V.V.
Pankratov, I.M.
Grigor’eva, L.I.
Beletskii, А.А.
Kasilov, A.A.
Burchenko, P.Ya.
Lozin, А.V.
Tsybenko, S.А.
Slavnyj, А.S.
Litvinov, A.P.
Kulaga, А.Ye.
Pavlichenko, R.O.
Zamanov, N.V.
Mironov, Yu.K.
Romanov, V.S.
Pashnev, V.K.
Maznichenko, S.M.
Volkov, Ye.D.
author_sort Chechkin, V.V.
title RА discharge dynamics with passing over l- and H-like mode states in the URAGAN-3M torsatron
title_short RА discharge dynamics with passing over l- and H-like mode states in the URAGAN-3M torsatron
title_full RА discharge dynamics with passing over l- and H-like mode states in the URAGAN-3M torsatron
title_fullStr RА discharge dynamics with passing over l- and H-like mode states in the URAGAN-3M torsatron
title_full_unstemmed RА discharge dynamics with passing over l- and H-like mode states in the URAGAN-3M torsatron
title_sort rа discharge dynamics with passing over l- and h-like mode states in the uragan-3m torsatron
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2012
topic_facet Магнитное удержание
url http://dspace.nbuv.gov.ua/handle/123456789/109081
citation_txt RА discharge dynamics with passing over l- and H-like mode states in the URAGAN-3M torsatron / V.V. Chechkin, I.M. Pankratov, L.I. Grigor’eva, А.А. Beletskii, A.A. Kasilov, P.Ya. Burchenko, А.V. Lozin, S.А. Tsybenko, А.S. Slavnyj, A.P. Litvinov, А.Ye. Kulaga, R.O. Pavlichenko, N.V. Zamanov, Yu.K. Mironov, V.S. Romanov, V.K. Pashnev, S.M. Maznichenko, Ye.D. Volkov // Вопросы атомной науки и техники. — 2012. — № 6. — С. 3-7. — Бібліогр.: 19 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT chechkinvv radischargedynamicswithpassingoverlandhlikemodestatesintheuragan3mtorsatron
AT pankratovim radischargedynamicswithpassingoverlandhlikemodestatesintheuragan3mtorsatron
AT grigorevali radischargedynamicswithpassingoverlandhlikemodestatesintheuragan3mtorsatron
AT beletskiiaa radischargedynamicswithpassingoverlandhlikemodestatesintheuragan3mtorsatron
AT kasilovaa radischargedynamicswithpassingoverlandhlikemodestatesintheuragan3mtorsatron
AT burchenkopya radischargedynamicswithpassingoverlandhlikemodestatesintheuragan3mtorsatron
AT lozinav radischargedynamicswithpassingoverlandhlikemodestatesintheuragan3mtorsatron
AT tsybenkosa radischargedynamicswithpassingoverlandhlikemodestatesintheuragan3mtorsatron
AT slavnyjas radischargedynamicswithpassingoverlandhlikemodestatesintheuragan3mtorsatron
AT litvinovap radischargedynamicswithpassingoverlandhlikemodestatesintheuragan3mtorsatron
AT kulagaaye radischargedynamicswithpassingoverlandhlikemodestatesintheuragan3mtorsatron
AT pavlichenkoro radischargedynamicswithpassingoverlandhlikemodestatesintheuragan3mtorsatron
AT zamanovnv radischargedynamicswithpassingoverlandhlikemodestatesintheuragan3mtorsatron
AT mironovyuk radischargedynamicswithpassingoverlandhlikemodestatesintheuragan3mtorsatron
AT romanovvs radischargedynamicswithpassingoverlandhlikemodestatesintheuragan3mtorsatron
AT pashnevvk radischargedynamicswithpassingoverlandhlikemodestatesintheuragan3mtorsatron
AT maznichenkosm radischargedynamicswithpassingoverlandhlikemodestatesintheuragan3mtorsatron
AT volkovyed radischargedynamicswithpassingoverlandhlikemodestatesintheuragan3mtorsatron
first_indexed 2025-07-07T22:32:40Z
last_indexed 2025-07-07T22:32:40Z
_version_ 1837029195363909632
fulltext MAGNETIC CONFINEMENT ISSN 1562-6016. ВАНТ. 2012. №6(82) 3 RF DISCHARGE DYNAMICS WITH PASSING OVER L- AND H-LIKE MODE STATES IN THE URAGAN-3М TORSATRON V.V. Chechkin, I.M. Pankratov, L.I. Grigor’eva, А.А. Beletskii, A.A. Kasilov, P.Ya. Burchenko, А.V. Lozin, S.А. Tsybenko, А.S. Slavnyj, A.P. Litvinov, А.Ye. Кulaga, R.O. Pavlichenko, N.V. Zamanov, Yu.K. Mironov, V.S. Romanov, V.K. Pashnev, S.M. Maznichenko, Ye.D. Volkov Institute of Plasma Physics NSC “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine In the l=3 Uragan-3M torsatron a hydrogen plasma with the density en ~ 2×1012 cm-3 is produced and heated by RF fields in the ω ≲ ωсi range of frequencies with using a frame-like antenna. Time variations are considered of (1) density en and electron cyclotron emission at different values of the RF power fed to the antenna; (2) fast ion generation and loss; (3) edge electric field Er and edge turbulent transport. Obtained results are of importance for (1) subsequent production and heating of denser plasmas; (2) understanding of processes resulting in the observed transition to the H-like confinement mode. PACS: 52.25.Fi, 52.55.Hc, 52.55.Pi, 52.70.Pi INTRODUCTION In the l=3 “Uragan-3M” (U-3M) torsatron with an open natural helical divertor the plasma is produced and heated by RF fields in the Alfven range of frequencies, ω≲ωсi [1]. Enclosure of the whole magnetic system into a large vacuum chamber and the plasma production and heating technique result in distinctions of discharge development during the RF pulse and after its termination. The time evolution of plasma parameters is considered where the RF power is transmitted to the plasma by means of an unshielded frame-like antenna with a comparatively long wavelength spectrum [2]. Behaviors of the line-averaged electron density en and electron cyclotron emission (ECE) from the central plasma are compared at different levels of the RF power P fed to the antenna. The link has been established between the value of en and the level of ЕСЕ. Two groups of ions with different temperatures are observed in U-3М: the lower temperature (tens eV) and higher temperature (300…600 eV) ones [3, 4]. In the optimum conditions for plasma heating the more energetic ion content (≳500 eV, fast ions, FI) increases [5]. With this, a short-time enhanced FI outflow to the divertor (burst of FI loss) occurs at a certain en value. With the power P high enough, the FI burst triggers a bifurcation of the edge Еr toward a more negative value with a stronger radial Er shear and, consequently, a stronger shear of the poloidal flux E×B. This results in suppression of the edge turbulent transport with indications of confinement improvement to occur (the H-like mode). With the density en changing after discharge ignition, two H-mode states separated by an enhanced edge turbulent transport (the L-like state) are realized. The results having been obtained are of interest for (i) target plasma formation to produce and heat a denser plasma in U-3M by means of another, shorter wave antenna; (ii) understanding of processes being determinative in the H-like mode formation in U-3M. 1. EXPERIMENTAL CONDITIONS The U-3M device (fig. 1) is an l=3/m=9 torsatron with R0=100 cm, a ≈12 cm, ι(а)/2π ≈ 0.3. The magnetic field Вφ≲1 Т is produced with the helical coils only. The whole magnetic system is enclosed into a large, 5 m diameter vacuum chamber, its volume, 70 m3, being 200 times larger than the confinement volume. So, an open natural helical divertor is realized. The fuelling gas (hydrogen) is leaked into the chamber continuously at the pressure p~10-5 Torr. III II I I II III I II III A9 A1 A8 A2 A3 A4 A5 A6A7 D2 D3 D7 D1 D4 D5 D6 D8 D9 movable probe array CXN energy analyzer microwave interferometry ECE divertor ion energy analyzer Fig. 1. U-3M helical coils I, II, III. Indicated are symmetric poloidal cross-sections А1, D1, A2, D2,…, A9, D9 in helical periods 1, 2, …, 9. respectively. The antenna is placed under the coils I and III between A1 and A2 (marked with dashes) with the leads in D1 on the low field side The plasma with en units 1012 сm-3 is RF produced and heated at the frequency ω≲ωсi, with the local Alfven resonance (LAR) condition N|| 2=ε1 being fulfilled for wavelengths λ|| excited by the antenna where N|| = k||c/ω, k||=2π/λ||, ε1 ≈ ωpi 2/(ωсi 2- ω2). Parallel with the linear Alfven heating, turbulent heating also takes place. The RF power is transmitted into the 4 ISSN 1562-6016. ВАНТ. 2012. №6(82) plasma by means of a twisted unshielded frame-like antenna [1, 2] (Fig. 2). The calculated spectrum of parallel wavelengths λ|| generated by the antenna [2] covers 40…400 cm with the maximum generation at λ|| max ≈ 80 cm. 0 20 40 60 80 100 120 po w er , a . u . 0.1 1 10 λ||, m Fig. 2. Schematic representation of the antenna. 1, 2, connections to the oscillator. Calculated spectrum of generated parallel wavelengths λ|| [2] The parallel component of the RF antenna current excites mainly slow modes of the Alfven wave [6]. In the operating regime Вφ=0,72 Т, ω/2π=8.8 МHz (ω=0,8ωсi(0)). The calculated λ|| spectrum in Fig. 2 corresponds to the resonance densities ni ≈ (0,07…7)×1012 сm-3 with ni = 1.8×1012 сm-3 for λ|| max ≈ 80 cm. Two groups of ions, lower temperature (Ti1, tens eV [3]) and higher temperature ones (Тi2 ≈ 300…600 eV [4]) are formed during the heating. A possible reason for the Тi2 group to arise turbulent processes could be [7]. Measurements are carried out of the density en , the intensity of 2nd harmonic ECE from the central region (“radiation temperature”), the CXN flux Гn with different perpendicular energies W⊥, the FI component (>500 eV) in the diverted plasma flow (DPF; a grid analyzer with retarding potential). Spatial distributions close to radial ones of mean and fluctuating edge parameters are studied with the use of movable Langmuir probes. In the typical operating regime (Р ≈ 130 kW, the RF pulse length 40 ms) the electron temperature in the central region as estimated from ECE amounts Te(0) ~ 500…700 eV. 2. DENSITY AND RADIATION TEMPERATURE EVOLUTION AT DIFFERENT VALUES OF RF POWER It follows from Fig. 3 that within comparatively low values 60 ≲ Р≲ 80 kW the en rise after discharge ignition is slowed down near en ≈2×1012 cm-3 (“ en (t) bend”). As P increases, the maximum en ≈ 6×1012 cm-3 shifts toward the end of RF pulse. The maximum level of ECE is reached in the en (t) bend. An ЕСЕ drop with a further density rise ( en >(2…3)×1012 cm-3) indicates plasma heating reduction due to LAR shift to the periphery. 0 20 40 60 80 0 1 2 3 4 5 6 time, ms n e ,1 012 cm -3 ; E C E, a . u . RF 60 kW _ _ ECE ne 0 20 40 60 80 0 1 2 3 4 5 6 time, ms n e ,1 012 cm -3 ; E C E, a . u . RF ne _ ECE _ 70 kW 0 20 40 60 80 0 1 2 3 4 5 6 time, ms n e ,1 012 c m -3 ; E C E , a .u . RF ne _ ÅÑÅ _ 80 kW 0 20 40 60 80 0 1 2 3 4 5 6 time, ms n e ,1 012 cm -3 ; EC E, a . u . _ ne ECE _ 110 kW RF 0 20 40 60 80 0 1 2 3 4 5 6 time, ms n e ,1 012 cm -3 ; E C E , a . u . _ 1 2 3 130 kW ne _ ECE RF Fig. 3. Time behavior of density en and 2nd harmonic ECE at different values of RF power fed to the antenna. Vertical dashed lines separate phases 1, 2, 3 of discharge evolution At Р>80 kW the density achieves en ≈ 6×1012 сm-3 no more, starting to decay before the end of RF pulse the faster the higher P is. At Р>100 kW the maximum density becomes en max≈2×1012 сm-3 in the active stage ( en bend). After RF switched off en rises again during ~3 ms, and after reaching en ≈4×1012 cm-3 decays finally with a characteristic time of ~15 ms. With en ≲2×1012 сm-3 a high level of ЕСЕ is kept over all the RF pulse, thus evidencing the optimum density for heating. At Р≈130…150 kW, where the value of en ≈1.2×1012 сm-3 is attained in the slow density decrease (the time of decay ~10 ms), some indications of the H- mode transition [8, 9] occur. These are [10, 11] a suspension of the en decay, speeding up of both ECE and plasma energy content Wdia rise. Most distinctly, these effects are displayed at Р≈130 kW. The H-mode transition is caused by the edge Er shear strengthening and suppression of the edge turbulent transport (see Sec. 4). We name the initial stage of the discharge up to emn ≈ 2×1012 сm-3 ( en bend) as phase 1 (Ph1), the stage of the density decay to the minimum en ≈1.2×1012 сm-3 and the H-mode transition as phase 2 (Ph2), and the subsequent state with the H-mode to the end of RF pulse as phase 3 (Ph3; see Fig. 3 at P ≈ 130 kW). At higher power values, Р>100 kW (see Fig. 3) in Ph2, the rate of the en decay to the minimum and H-mode transition increases with power so that the Ph2 length ISSN 1562-6016. ВАНТ. 2012. №6(82) 5 reduces. This dependence is consistent with the universal generality, power degradation of confinement [12]. At Р>80 kW a short-time ~3-fold increase en after RF switched off (see Fig. 3) is explained [7] by plasma flows reduction due to cooling, while the electron temperature remains sufficiently high for some time to ionize the neutral gas entering from the free volume of the chamber. 3. BEHAVIOR OF FAST IONS AND THEIR LOSS. THE LINK BETWEEN FI LOSS AND H-MODE TRANSITION More energetic ions from the Ti2 group (FI) seriously affect plasma characteristics in U-3M. In particular, the FI direct loss results in the DPF up-down asymmetry [13]. The relative FI content increases with the RF power [5]. 0 1 2 3 4 0 1 2 3 0 1 2 3 0 1 2 3 0 20 40 60 0 1 2 3 (e) (d) (c) 1 n e ,1 012 cm -3 - RF 2 3 (a) (b) time, ms I i , a .u . Ã n , a . u . Ã n , a . u . Ã n , a . u . 450 eV 1125 eV 2475 eV >500 eV Fig. 4. Time behavior of (а) density en ; (b, c, d) CXN flux Гn with different perpendicular energies; (e) ion current Ii to the analyzer collector at U=500 V The time evolution of the CXN flux Γn with different energies W⊥ (Fig. 4) displays variation of the concentration of ions with such energies in the confinement volume. At W⊥<500 eV (see Fig. 4,b) the behavior of Гn(t) does not exhibit any distinctions correlating with en (t). However, at W⊥≳500 eV in Ph2 Гn(t) changes in antiphase with en (t) (see Fig. 4,c,d), attaining a maximum at the minimum 2en ≈ 1.2×1012 сm-3, where the H-like mode transition occurs. In Ph1 with en increasing, Гn also passes over a maximum at 1en ≈ 2en . It is shown in Fig. 4,e how the FI outflow to the divertor changes in time (ion current Ii to the analyzer collector at the retarding voltage U = +500 V). In Ph1 at en = 1en and in the end of Ph2 ( 2en ≈ 1en ) a short-time (hundreds μs) enhanced FI outflow to the divertor occurs, indicating a manifold rise of the FI loss (burst of FI loss). The burst amplitude increases with RF power [10, 11] and exhibits a resonance-like behavior depending on Bφ at a fixed Р (Fig. 5, measured in Ph1). 0.68 0.70 0.72 0.74 0 1 2 3 4 5 I i, a. u. BФ, T Fig. 5. Fast ion burst amplitude Ii versus toroidal magnetic field strength Bφ (measured in Ph1) The synchronism of density decay termination at 2en ≈ 1,2×1012 сm-3, the rise of ЕСЕ and Wdia in the end of Ph2 – start of Ph3, on the one hand, and the FI content passing over a maximum and the burst of FI ion loss, on the other hand, suggests an idea that the H-like mode is triggered by the non-umbipolar FI loss. 4. TIME EVOLUTION OF EDGE Еr AND Еr EFFECT ON TURBULENT TRANSPORT Qualitatively, the effect of the Er shear amplification in the H-like mode transition is demonstrated by comparison of edge floating potential profiles Vf(h) close to radial ones (Fig. 6; h is the probe distance from the minor vertical exis when moving 1 cm over the midplane) before (t < 0) and after (t > 0) the transition (t = 0 corresponds to the moment of the Ph2–Ph3 transition with the burst of FI loss). Fig. 6. Mean edge floating potential Vf versus distance h as measured at different moments t (indicated in ms) before (t<0) and after (t>0) transition (t=0). The plots measured 25 μs before and 25 μs after FI burst maximum (shaded) are marked as -0 and +0, respectively. Vertical dashed lines indicate LCFS position. In the insertion the line of probe movement is marked by dashes a c b d e 6 ISSN 1562-6016. ВАНТ. 2012. №6(82) The value of |Vf| near the LCFS (h = h0 ≅ 10 см) increases with probe displacement toward both h < h0 and h > h0, while min(Vf) shifts inside the boundary. Еr ≈ -dVf/dh becomes more negative, with Er shear increasing. A rough estimation yields Еr ≈ -20 V/сm in Ph2 and Еr ≈ -100 V/сm in Ph3. Similar to other 3D systems [9] and tokamaks [14], the radial shear of the mean flow E×B with negative Er is formed at the plasma boundary prior to the transition. The presence of a pre-transitional lower edge Еr is connected with the maximum (“hump”) of the electrostatic potential arising near the LCFS due to formation of the “radial sheath” (Δ≲1сm) and the “ion halo” [15]. In Ph1 a lower level of Γ% and a stronger Er shear also set in with the burst of FI loss at 1en ≈ 2en . This short-time (2…3 ms) H-like mode state is terminated at emn ≈2×1012 сm-3 ( en bend) by a sudden, bifurcation- like reduction of |Er| and Er shear with a Γ% rise and consequent en decay due to increase of plasma loss (Ph2). In this sense, we may say about a short-time H-like mode state to occur in Ph1 too. Here, however, the burst of FI loss in itself can arise at the same density 1en even at a lower power, P<100 kW, though with a smaller amplitude where no H-mode occurs. This is an evidence of the FI burst being a primary effect relative to the H-like mode transition. -120 -60 0 60 120 180 -5 0 5 10 31 n e , 1 012 c m -3 2 Ã , a. u . ~ <Ã >, a . u . ~ 0 5 10 15 20 25 30 35 40 time, ms RF0.0 0.5 1.0 1.5 2.0 2.5 (c) (b) (a) Fig. 7. Time behavior of (а) density en , (b) edge radial turbulent flux Γ% (probe position h = 10.5 cm) and (c) its value averaged over 1 ms intervals < Γ% > The changes in Еr are momentarily displayed in the value of the edge turbulent flux Γ% (Fig. 7). A time correlation is well seen between the level of edge turbulent transport (a surface process) and plasma confinement (a volume characteristic defined here by the rate of en decay). In Ph3 (H-like mode) <Γ% > practically vanishes with suspension or deceleration of the density decay. SUMMARY AND DISCUSSION ♦ Within 60≲Р≲80 kW a cold plasma with en ≈ (4…6)×1012 сm-3 is produced in U-3M. At Р>100 kW the maximum density becomes emn ≈ 2×1012 сm-3 with a high Те(0) which is kept over all the RF pulse. Such a discharge can be used as a target to produce and heat a denser plasma (up to 1013 сm-3) by exciting the fast mode of the Alfven wave by a shorter wave antenna with azimuthal currents [16]. ♦ In the typical operating regime (P≈130 kW), processes developing in the active stage can be divided in two groups by the time scale of their variation. To the slower processes (units – 10 ms) the density decay in Ph2 from emn ≈2×1012 сm-3 to 2en ≈1.2×1012 сm-3 (see Fig. 3,е) is related, first of all. With this, the FI content increases (units ms) attaining a maximum at en = 2en (see Fig. 4,с,d), with the plasma energy content Wdia and ECE also growing monotonously. Taking account of the FI content increasing with power [5], optimum conditions for FI generation are supposed to be realized at the combination ω/2π = 8.8 МHz, Вφ = 0.72 Т and en ≈ 2en , with increasing RF power fraction deposited in the plasma (a specific “coupling resonance”, see also [17]). On the other hand, the rise of this fraction results in a stronger confinement degradation and density decrease. Against a background of slower processes preparing the “coupling resonance” with maximum FI content, faster processes (tens – hundreds μs) arise, which determine the H-like mode transition in itself. The transition is triggered by the burst of FI loss (~500 μs, see Fig. 4,e). The burst initiates the edge Er bifurcation to a more negative value with the Еr shear amplified (~50 μs, see Fig. 6). The stronger Еr shear suppresses the edge turbulence [18] and turbulence-induced anomalous transport Γ% (see Fig. 7). The time of the Γ% drop is ~100 μs. The Еr bifurcation triggered by the ion orbit loss is considered in [19]. ♦ Similar to other devices [9, 14], in U-3M a characteristic form of the edge potential profile has been already formed before the H-transition (see Fig. 6) and, probably, results from the non-ambipolar ion orbit loss [15]. With the transition, the edge Er becomes stronger, with the potential well shifting inside the LCFS. ♦ Triggered by a single burst of FI loss, the H-like mode state persists for a comparatively long period without recovering the pre-transitional higher level of the edge turbulence (see Fig. 6). It looks as if the discharge went from one quasi-steady (L-like) state to another (H-like) state. REFERENCES 1. O.M. Shvets, I.A. Dikij, S.S. Kalinichenko, et al. // Nucl. Fusion. 1986, v. 26, p. 23. 2. Y.G. Zalesski, P.I. Kurilko, N.I. Nazarov, et al. // Fizika plasmy. 1989, v. 15, p. 1424 (in Russian). a b c ISSN 1562-6016. ВАНТ. 2012. №6(82) 7 3. V.G. Konovalov, V.N. Bondarenko, A.N. Shapoval, et al. // Prob. At. Sci. Techn. Ser. “Plasma Phys”. 2002, № 4, p. 53. 4. M. Dreval, A.S. Slavnyj // Plasma Phys. Control. Fusion. 2011, v. 53, p. 065014. 5. V.V. Chechkin, L.I. Grigor’eva, E.L. Sorokovoy, et al. // Nucl. Fusion. 2003, v. 43, p. 1175. 6. A.V. Longinov, K.N. Stepanov. High-Frequency Heating. New York: AIP, 1992, p. 93. 7. N.T. Besedin, S.V.Kasilov, I.M. Pankratov, et al. Stellarators and Other Helical Confinement Systems. Collection of Papers Presented At the IAEA TCM, Garching, Germany, 10-14 May 1993. Vienna: IAEA, 1993, p. 277. 8. F. Wagner // Plasma Phys. Control. Fusion. 2007, v. 49, p. В1-В33. 9. M. Hirsch // Contrib. Plasma Phys. 2010, v. 50, p. 487. 10. V.V. Chechkin, L.I. Grigor’eva, Ye.L. Sorokovoy, et al. // Plasma Phys. Rep. 2009, v. 35, p. 852. 11. I.M. Pankratov, A.A. Beletskii, V.L. Berezhnyj, et al. // Contrib. Plasma Phys. 2010, v. 50, p. 520. 12. H. Maaβberg, R. Brakel, R. Burhenn, et al. // Plasma Phys. Control. Fusion. 1993, v. 35, p. B319. 13. V.V. Chechkin, L.I. Grigor’eva, M.S. Smirnova, et al. // Nucl. Fusion. 2002, v. 42, p. 192. 14. Ch.P. Ritz, R.D. Bengtson, S.J. Levinson, E.J. Powers // Phys. Fluids. 1984, v. 27, p. 2956. 15. R.D. Hazeltine // Phys. Fluids B. 1989, v.1, p. 2031. 16. S.V. Kasilov, A.I. Lysojvan, V.E. Moiseenko, V.V. Plyusnin // Stellarators and Other Helical Confinement Systems. Collection of Papers Presented at the IAEA TCM, Garching, Germany, 10-14 May 1993. Vienna: IAEA, 1993, р. 447. 17. V.V. Chechkin, I.P. Fomin, L.I. Grigor’eva, et al. // Nucl. Fusion. 1996, v. 36, p. 133. 18. K.H. Burrell // Physics of Plasmas. 1997, v. 4, p. 1499. 19. K.C. Shaing, E.C. Crume, Jr. // Phys. Rev. Lett. 1989, v. 63, p. 2369. Article received 01.10.12 ДИНАМИКА ВЧ-РАЗРЯДА С ПРОХОЖДЕНИЕМ L- И Н-ПОДОБНЫХ СОСТОЯНИЙ В ТОРСАТРОНЕ УРАГАН-3М В.В. Чечкин, И.М. Панкратов, Л.И. Григорьева, А.А. Белецкий, А.А. Касилов, П. Я.Бурченко, А.В. Лозин, С.А. Цыбенко, А.С. Славный, A.П. Литвинов, А.Е. Кулага, Р.О. Павличенко, Н.В. Заманов, Ю.К. Миронов, В.С. Романов, В.К. Пашнев, С.М. Мазниченко, Е.Д. Волков В трехзаходном торсатроне У-3М водородная плазма с плотностью en ~2×1012 cм-3 создаётся и нагревается ВЧ-полями в области частот ω≲ωсi с использованием рамочной антенны. Рассмотрены изменения во времени: 1) плотности en и электронного циклотронного излучения при различных значениях ВЧ-мощности, подводимой к антенне; 2) генерации быстрых ионов и их потерь; 3) краевого электрического поля Еr и краевого турбулентного пeреноса. Полученные результаты важны для последующего получения и нагрева более плотной плазмы и понимания процессов, приводящих к переходу в Н-подобную моду удержания. ДИНАМІКА ВЧ-РОЗРЯДУ З ПРОХОДЖЕННЯМ L- ТА Н-ПОДІБНИХ СТАНІВ У ТОРСАТРОНІ УРАГАН-3М В.В. Чечкін, І.М. Панкратов, Л.І. Григор’єва, О.О. Білецький, А.А. Касілов, П. Я.Бурченко, О.В. Лозін, С.А. Цибенко, О.С. Славний, A.П. Литвинов, А.Є. Кулага, Р.О. Павличенко, Н.В. Заманов, Ю.К. Миронов, В.С. Романов, В.К. Пашнєв, С.М. Мазниченко, Є.Д. Волков У тризаходному торсатроні У-3М воднева плазма зі щільністю en ~2×1012 cм-3 створюється і нагрівається ВЧ-полями в області частот ω≲ωсi з використанням рамкової антени. Розглянуті часові зміни: 1) густини en та електронного циклотронного випромінювання при різних значеннях ВЧ-потужності, що підводиться до антени; 2) генерації швидких іонів та їх втрат; 3) крайового електричного поля Еr та крайового турбулентного переносу. Одержані результати важливі для подальшого створення та нагріву більш щільної плазми і розуміння процесів, що призводять до переходу в Н-подібну моду утримання.