Auxiliary ECR heating system for the gas dynamic trap
Physics aspects of a new system for electron cyclotron resonance heating (ECRH) at the magnetic mirror device Gas Dynamic Trap (GDT, Budker Institute, Novosibirsk) are discussed. This system based on two 400 kW / 54.5 GHz gyrotrons is aimed at increasing the electron temperature up to the range 250…...
Saved in:
Date: | 2012 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2012
|
Series: | Вопросы атомной науки и техники |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/109099 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Auxiliary ECR heating system for the gas dynamic trap / A.G. Shalashov, E.D. Gospodchikov, O.B. Smolyakova, P.A. Bagryansky, V.I. Malygin, M. Thumm // Вопросы атомной науки и техники. — 2012. — № 6. — С. 49-51. — Бібліогр.: 5 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-109099 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1090992016-11-21T03:02:09Z Auxiliary ECR heating system for the gas dynamic trap Shalashov, A.G. Gospodchikov, E.D. Smolyakova, O.B. Bagryansky, P.A. Malygin, V.I. Thumm, M. Нагрев плазмы и поддержание тока Physics aspects of a new system for electron cyclotron resonance heating (ECRH) at the magnetic mirror device Gas Dynamic Trap (GDT, Budker Institute, Novosibirsk) are discussed. This system based on two 400 kW / 54.5 GHz gyrotrons is aimed at increasing the electron temperature up to the range 250…350 eV for improved confinement. The key issue of the GDT conditions is that conventional ECRH geometries are not accessible. The proposed solution is based on a peculiar effect of radiation trapping in inhomogeneous magnetized plasma. Under specific conditions oblique launch of gyrotron radiation results in right-hand-polarized electromagnetic waves propagating with high n|| in the vicinity of the cyclotron resonance, what provides effective single-pass absorption of the injected microwave power. Обсуждаются физические аспекты и возможные параметры новой системы дополнительного ЭЦР-нагрева для газодинамической магнитной ловушки ГДЛ (ИЯФ, Новосибирск). При использовании излучения двух 400 кВт / 54.5 ГГц гиротронов можно ожидать повышения температуры электронов до 250…350 эВ и улучшения времени удержания ионов. Трудности, связанные с невозможностью использования традиционных схем ЭЦР-нагрева в геометрии ГДЛ, предлагается преодолеть за счет эффекта захвата излучения, вводимого из вакуума в виде необыкновенной волны под определенным углом, в трехмерно-неоднородной магнитоактивной плазме. Обговорюються фізичні аспекти і можливі параметри нової системи додаткового ЕЦР-нагріву для газодинамічної магнітної пастки ГДП (ІЯФ, Новосибірськ). При використанні випромінювання двох 400 кВт/54.5 ГГц гіротронів можна чекати підвищення температури електронів до 250…350 еВ і поліпшення часу утримання іонів. Труднощі, пов'язані з неможливістю використання традиційних схем ЕЦР-нагрівання в геометрії ГДП, пропонується подолати за рахунок ефекту захоплення випромінювання, що вводиться з вакууму у вигляді незвичайною хвилі під певним кутом, в тривимірно-неоднорідній магнітоактивній плазмі. 2012 Article Auxiliary ECR heating system for the gas dynamic trap / A.G. Shalashov, E.D. Gospodchikov, O.B. Smolyakova, P.A. Bagryansky, V.I. Malygin, M. Thumm // Вопросы атомной науки и техники. — 2012. — № 6. — С. 49-51. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 52.50.Sw, 52.35.Hr, 42.25.Gy http://dspace.nbuv.gov.ua/handle/123456789/109099 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Нагрев плазмы и поддержание тока Нагрев плазмы и поддержание тока |
spellingShingle |
Нагрев плазмы и поддержание тока Нагрев плазмы и поддержание тока Shalashov, A.G. Gospodchikov, E.D. Smolyakova, O.B. Bagryansky, P.A. Malygin, V.I. Thumm, M. Auxiliary ECR heating system for the gas dynamic trap Вопросы атомной науки и техники |
description |
Physics aspects of a new system for electron cyclotron resonance heating (ECRH) at the magnetic mirror device Gas Dynamic Trap (GDT, Budker Institute, Novosibirsk) are discussed. This system based on two 400 kW / 54.5 GHz gyrotrons is aimed at increasing the electron temperature up to the range 250…350 eV for improved confinement. The key issue of the GDT conditions is that conventional ECRH geometries are not accessible. The proposed solution is based on a peculiar effect of radiation trapping in inhomogeneous magnetized plasma. Under specific conditions oblique launch of gyrotron radiation results in right-hand-polarized electromagnetic waves propagating with high n|| in the vicinity of the cyclotron resonance, what provides effective single-pass absorption of the injected microwave power. |
format |
Article |
author |
Shalashov, A.G. Gospodchikov, E.D. Smolyakova, O.B. Bagryansky, P.A. Malygin, V.I. Thumm, M. |
author_facet |
Shalashov, A.G. Gospodchikov, E.D. Smolyakova, O.B. Bagryansky, P.A. Malygin, V.I. Thumm, M. |
author_sort |
Shalashov, A.G. |
title |
Auxiliary ECR heating system for the gas dynamic trap |
title_short |
Auxiliary ECR heating system for the gas dynamic trap |
title_full |
Auxiliary ECR heating system for the gas dynamic trap |
title_fullStr |
Auxiliary ECR heating system for the gas dynamic trap |
title_full_unstemmed |
Auxiliary ECR heating system for the gas dynamic trap |
title_sort |
auxiliary ecr heating system for the gas dynamic trap |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2012 |
topic_facet |
Нагрев плазмы и поддержание тока |
url |
http://dspace.nbuv.gov.ua/handle/123456789/109099 |
citation_txt |
Auxiliary ECR heating system for the gas dynamic trap / A.G. Shalashov, E.D. Gospodchikov, O.B. Smolyakova, P.A. Bagryansky, V.I. Malygin, M. Thumm // Вопросы атомной науки и техники. — 2012. — № 6. — С. 49-51. — Бібліогр.: 5 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT shalashovag auxiliaryecrheatingsystemforthegasdynamictrap AT gospodchikoved auxiliaryecrheatingsystemforthegasdynamictrap AT smolyakovaob auxiliaryecrheatingsystemforthegasdynamictrap AT bagryanskypa auxiliaryecrheatingsystemforthegasdynamictrap AT malyginvi auxiliaryecrheatingsystemforthegasdynamictrap AT thummm auxiliaryecrheatingsystemforthegasdynamictrap |
first_indexed |
2025-07-07T22:34:06Z |
last_indexed |
2025-07-07T22:34:06Z |
_version_ |
1837029284110139392 |
fulltext |
49
ISSN 1562-6016. ВАНТ. 2012. №6(82)
AUXILIARY ECR HEATING SYSTEM FOR THE GAS DYNAMIC TRAP
A.G. Shalashov1,2, E.D. Gospodchikov1,2, O.B. Smolyakova1, P.A. Bagryansky3,
V.I. Malygin1, M. Thumm4
1Institute of Applied Physics of the Russian Academy of Sciences, N.Novgorod, Russia;
2Lobachevsky State University of Nizhni Novgorod (UNN), N.Novgorod, Russia;
3Budker Institute of Nuclear Physics, Novosibirsk, Russia;
4Karlsruhe Institut für Technologie, Karlsruhe, Germany
E-mail: egos@appl.sci-nnov.ru
Physics aspects of a new system for electron cyclotron resonance heating (ECRH) at the magnetic mirror device Gas
Dynamic Trap (GDT, Budker Institute, Novosibirsk) are discussed. This system based on two 400 kW / 54.5 GHz gyro-
trons is aimed at increasing the electron temperature up to the range 250…350 eV for improved confinement. The key
issue of the GDT conditions is that conventional ECRH geometries are not accessible. The proposed solution is based on a
peculiar effect of radiation trapping in inhomogeneous magnetized plasma. Under specific conditions oblique launch of
gyrotron radiation results in right-hand-polarized electromagnetic waves propagating with high n|| in the vicinity of the
cyclotron resonance, what provides effective single-pass absorption of the injected microwave power.
PACS: 52.50.Sw, 52.35.Hr, 42.25.Gy
INTRODUCTION
The mirror device Gas Dynamic Trap (GDT) at the
Budker Institute of Nuclear Physics in Novosibirsk is
proposed as a fusion neutron source to test and validate
inner wall components of future thermonuclear fusion
reactors [1]. Relative to previous magnetic mirror neutron
sources, the GDT facility uses simpler axisymmetric
magnets providing about 2 MW/m2 neutron flux. Recent
results with high β=0.6 provide a firm basis for extrapo-
lating to a fusion relevant high-flux neutron source [2].
Another important application of the GDT neutron source
is nuclear waste processing based on fusion driven burn-
ing of minor actinides. In this paper we discuss physics
and design of a new system for electron cyclotron reso-
nance heating (ECRH) presently under construction for
the GDT device which is aimed at increasing the bulk
electron temperature in the trap volume and in the long
run the efficiency of the neutron source.
The main part of the GDT setup is an axially sym-
metric magnetic mirror with high mirror ratio. The con-
fined plasma consists of two ion components: the back-
ground ions with a temperature of about 200 eV and
density 2·1019 m-3 confined in a gas-dynamic regime,
and the hot ions, which are produced as a result of
oblique injection of high-power (up to 5 MW) hydrogen
or deuterium beams into the plasma. The distribution
function of the hot component is essentially anisotropic
in the velocity space; therefore the density and pressure
of hot ions are peaked in the mirror (turning) points
providing the conditions for fusion reactions. Presently
the mean energy of the hot ions is about 9 keV, and
their density near the mirror points reaches 5·1019 m-3.
Energy confinement times of hot ions as well as their
velocity spread are determined basically by the colli-
sional slowing-down on the bulk electrons. Since the
collisional time 2/3
eei T∝τ , the electron drag force is
rapidly decreasing with increasing electron temperature.
This makes the electron temperature to be the most im-
portant parameter which determines the efficiency of
the neutron source.
One of the possibilities to increase the electron
temperature in the GDT is provided by the auxiliary
ECRH system discussed in the present paper. This sys-
tem based on two 400 kW / 54.5 GHz gyrotrons has a
pulse duration close to the typical NBI-driven discharge
(about 5 ms). The evident and attractive feature of
ECRH is direct power transfer into the electron compo-
nent which may be comparable to the power transmitted
to electrons due to the ion slowing-down (≈1 MW).
Power balance analysis shows that the auxiliary ECRH
can provide essential enhancement of electron tempera-
ture: up to 350 eV (in case of full absorption) instead of
200 eV achieved in present-day experiments with 5 MW
NBI heating. This corresponds to enhancement of the
hot-ion confinement time from 2.3 to 5 ms which drasti-
cally increases the efficiency of neutron-flux produc-
tion.
1. BASIC PHYSICS OF ECRH IN GDT
The key physical issue of the GDT conditions is
that all conventionally used ECRH geometries are not
accessible. The so-called transverse launch of the gyro-
tron radiation with respect to the ambient magnetic field
shows low efficiency for GDT plasmas even at the fun-
damental harmonic due to reatively low electron tem-
perature and small scales of a device. Indeed, the total
optical depth for the ordinary (O) mode may be esti-
mated as [3]
1Im2 2mode-O <<≈⋅= ∫ Be qkLd βπτ lk ,
where 02.0~)/( 2/12cmT eee =β , 1~/ 22
cepeq ωω= is
the ratio between the electron plasma and cyclotron fre-
quencies, ck ce /ω= is the vacuum wavenumber corre-
sponding to 54.5 GHz, and 10~BL cm is the magnetic
field inhomogeneity scale. Quasi-transverse launch of
the extraordinary (O) mode is impossible at the funda-
mental harmonics due to plasma refraction and posses
the same low efficiency at the second harmonic as the
fundamental O mode. Fortunately, the fundamental X-mode
50 ISSN 1562-6016. ВАНТ. 2012. №6(82)
may be effectively absorbed while propagating quasi-
longitudinally along the magnetic field at large enough
longitudinal refractive index 3/1
|| ~ −
eN β , the total opti-
cal depth is then [4]
10~)1( 2/33/23/18modeX
0 Be kLqq −≈− βτ
π
.
However, the quasi-longitudinal launch of waves with
high-enough ||N is physically impossible at the GDT
conditions. The solution proposed is based on a peculiar
effect of radiation trapping in an inhomogeneous mag-
netized plasma column. Under specific conditions obli-
que launch of gyrotron radiation results in extraordinary
mode propagating longitudinally in a vicinity of the
cyclotron resonance, what provides effective single-path
absorption of the injected rf power. The physics of the
radiation trapping may be understood as following. A
wave beam injected obliquely from a vacuum posses
1|| <N which is nearly constant of the plasma-vacuum
boundary. During propagating in plasma the longitudi-
nal refractive index increases as
[ ]
pointinjection at ||||
22
|| )/()(cos εεεθε ++Δ≈Δ −−N ,
where )/(1 2
cepe ωωωε −−=− , 22
|| /1 ωωε pe−= , and
−Δε is variation of −ε along the radiation path, θ is the
wave propagation angle. Evidently, if 1|| || >N at a
plasma border, then radiation cannot escape the plasma
volume at least as a geometrical-optics ray. A ray is
reflected back to the plasma core, and propagates to-
wards the electron cyclotron resonance (ECR) where
both −ε and ||N are increasing. Finally the ray reaches
the vicinity of the ECR with 3/1
|| ~ −
eN β sufficient for a
single-pass absorption. Note that due to increasing −ε
the trapping does not occurs if the injection port is close
enough to the ECR surface. Note that the whole effect
of trapping is essentially three-dimensional, so it re-
quires at least ray-tracing modeling in a realistic geometry.
2. NUMERICAL MODELING
Below microwave radiation propagating in weakly
inhomogeneous axisymmetric plasma is described with-
in a ray tracing model for an axisymmetric mirror trap
explained in more detail in [5]. Ray-tracing calculations
have been performed for the realistic distribution of the
confining magnetic field ),( rzBz and ),( rzBr . The
distributions of electron density and temperature in the
GDT device are approximated as
⎪
⎪
⎩
⎪⎪
⎨
⎧
−
−
=
,0
,
,
*0
0
aa
raN
N
Ne
⎪
⎪
⎩
⎪
⎪
⎨
⎧
<
<<
−
−
+
−
−
<
=
ra
ara
aa
arT
aa
raT
arT
Te
,0
,
,
*
*
*
2*1
*
1
where )(za is the outer radius of a plasma cord, )(* za
is a size of the plateau of a radial profile, 0N is the cen-
tral density which varies in the range (0.5…5)·1019 m-3,
1501 =T eV, 252 =T eV. The transverse dimensions of
the plasma cord may be obtained from conservation of
the magnetic flux through the area across the trap axis,
const)0,()(2 ≈zBza , the same relation holds for )(* za .
In the trap center 13=a cm and 8* =a cm.
The ray-tracing model allows us to investigate nu-
merically a number of optimized ECRH scenarios based
on the proposed mechanism of wave trapping7. In the
following we describe the most efficient geometry that
was finally used for a hardware design. In the example
shown in Fig 1. (left) one can see how a set of rays may
be splitted into trapped and untrapped fractions depend-
ing on the initial launching angle or the bulk plasma
density. In Fig. 2 (right) we demonstrate the effect of
bulk (central) plasma density on ray trapping. Note that
all trapped rays are 100% absorbed.
Fig. 1. Left – geometric-optical rays for a set of launching
angles 15 …70o. Bulk plasma density is 1.5·1019m-3. Right –
rays launched with the same angle 55o for a set of plasma
densities in the range of N0 = (0.5…2.5)·1019 m-3
Modeling shows that trapping is possible in a suffi-
ciently wide range of plasma densities and for various
density profiles corresponding to various experimental
conditions. The most important results are summarized
in Fig. 2 where the trapping regions are mapped in the
plasma density – launching angle diagram. Here we
consider three possible positions for the last mirror
shown in the inset. After some discussion the “launch 1”
point was chosen for the reference design presented
below. Correspondingly, this geometry allows operating
in the density range (0.5…2.5)·1019 m-3 using a 50…55o
angular window.
Fig. 2. Operating windows in angle—density plot for
tree positions for the ECRH launcher
3. DESIGN AND CONSTRUCTION
The ECRH system designed for the GDT device
consists of two 54.5 GHz, 400 kW gyrotron modules
(Buran-A type) operating independently. Each module
is equipped with a waveguide transmission line and a
launcher. Each transmission line includes a matching
optical unit (MOU) to prepare a Gaussian microwave
Launch 1
Launch 2
Launch 3
ϑ
ray
Launch 1
Launch 2
Launch 3
ϑ
ray
51
ISSN 1562-6016. ВАНТ. 2012. №6(82)
beam with parameters suitable for transmission, a cor-
rugated HE11 waveguide (inner ∅63.5 mm) and three
90° miter bend units. One of these miter bends is just a
plane reflector, another one is combined with transmit-
ted and reflected microwave power monitors, and the
third one is combined with a polariser to provide mi-
crowave beam polarisation optimal for launching and
absorption into the plasma column. The total length of
the waveguide line is about 31 m. The system provides
a fundamental harmonic X-mode Gaussian beam with a
radius of 15 mm at the plasma boundary.
Fig.3. Top – overview of the GDT facility and positions
of the ECRH ports. Bottom – schematic of one of the
ECRH launchers. Mirror number 1 is plane; mirrors 2
and 3 are parabolic focusing
CONCLUSIONS
An auxiliary (2 x 400) kW 54.5 GHz ECRH system
is now under construction at the GDT device in the
BINP. The gyrotrons have already been successfully
tested in 300 microsecond operation. This system can
provide essential enhancement of the electron tempera-
ture in GDT up to 300…400 eV. According to computer
simulations, in this temperature range a GDT like neu-
tron source is quite attractive in comparison with accel-
erator based systems. The design of the proposed ECRH
launching system is shown in Fig. 3.
Finally we would like to mention another very
promising application of ECRH in GDT which is the
creation of a hot electron population for improved con-
finement. This topic is a matter of on-going research.
REFERENCES
1. V.V. Mirnov, D.D. Ryutov. // Sov. Tech. Phys. Lett.
1979, v.5, p. 279.
2. P.A. Bagryansky, A.A. Ivanov, E.P. Kruglyakov,
A.M. Kudryavtsev, Yu.A. Tsidulko, A.V. Andriyash,
A.L. Lukin, Yu.N. Zouev//Fusion Eng. Des. 2004,
v. 70, p. 13.
3. M. Bornatici et al.// Nucl.Fusion .1983, v. 23(9), p. 1153.
4. E.D. Gospodchikov. E.V. Suvorov// Radiophys. and
Quantum Electronics. 2005, v. 48 (8), p. 641.
5. E.D. Gospodchikov, O.B. Smolyakova, E.V.Suvorov
// Plasma Physics Reports. 2007, v. 33 (5), p. 427.
Article received 18.09.12
СИСТЕМА ДОПОЛНИТЕЛЬНОГО ЭЦР-НАГРЕВА ДЛЯ ГАЗОДИНАМИЧЕСКОЙ ЛОВУШКИ
А.Г. Шалашов, Е.Д. Господчиков, О.Б. Смолякова, П.А. Багрянский, В.И. Малыгин, М. Тумм
Обсуждаются физические аспекты и возможные параметры новой системы дополнительного ЭЦР-
нагрева для газодинамической магнитной ловушки ГДЛ (ИЯФ, Новосибирск). При использовании излуче-
ния двух 400 кВт / 54.5 ГГц гиротронов можно ожидать повышения температуры электронов до 250…350 эВ
и улучшения времени удержания ионов. Трудности, связанные с невозможностью использования традици-
онных схем ЭЦР-нагрева в геометрии ГДЛ, предлагается преодолеть за счет эффекта захвата излучения,
вводимого из вакуума в виде необыкновенной волны под определенным углом, в трехмерно-неоднородной
магнитоактивной плазме.
СИСТЕМА ДОДАТКОВОГО ЕЦР-НАГРІВУ ДЛЯ ГАЗОДИНАМІЧНОЇ ПАСТКИ
А.Г. Шалашов, О.Д. Господчиков, О.Б. Смолякова, П.А. Багрянський, В.І. Малигін, М. Тумм
Обговорюються фізичні аспекти і можливі параметри нової системи додаткового ЕЦР-нагріву для газо-
динамічної магнітної пастки ГДП (ІЯФ, Новосибірськ). При використанні випромінювання двох
400 кВт/54.5 ГГц гіротронів можна чекати підвищення температури електронів до 250…350 еВ і поліпшення
часу утримання іонів. Труднощі, пов'язані з неможливістю використання традиційних схем ЕЦР-нагрівання
в геометрії ГДП, пропонується подолати за рахунок ефекту захоплення випромінювання, що вводиться з
вакууму у вигляді незвичайною хвилі під певним кутом, в тривимірно-неоднорідній магнітоактивній плазмі.
|