The development of light ion injector for the plasma diagnostic system based on beam emission spectroscopy
The development of light ion injector and neutralizer for the BES plasma diagnostic system and its first experimental results are presented in this work. This injector will be used for neutral beam plasma diagnostic systems. Diagnostic systems based on neutral beams of Li or Na atoms can be used to...
Gespeichert in:
Datum: | 2012 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2012
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/109190 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | The development of light ion injector for the plasma diagnostic system based on beam emission spectroscopy / A.A. Chmyga, G.N. Deshko, A.D. Komarov, A.S. Kozachek, L.I. Krupnik, S.M. Khrebtov, Yu.I. Tashchev, A.I. Zhezhera // Вопросы атомной науки и техники. — 2012. — № 6. — С. 252-254. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-109190 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1091902016-11-22T03:02:19Z The development of light ion injector for the plasma diagnostic system based on beam emission spectroscopy Chmyga, A.A. Deshko, G.N. Komarov, A.D. Kozachek, A.S. Krupnik, L.I. Khrebtov, S.M. Tashchev, Yu.I. Zhezhera, A.I. Диагностика плазмы The development of light ion injector and neutralizer for the BES plasma diagnostic system and its first experimental results are presented in this work. This injector will be used for neutral beam plasma diagnostic systems. Diagnostic systems based on neutral beams of Li or Na atoms can be used to study the spatial plasma density profiles, impurity ions and magnetic field distribution in the border region of the plasma fusion devices. This method is based on the detection of the probe beam glow of atoms excited by the plasma electrons. These diagnostic systems consist of two main parts – the neutral beam injector (including the ion beam accelerator and neutralizer) and the secondary light signal registration system. Light ion beam accelerator based on the five-electrode ion-optical system, in contrast to the classical three-electrode system, delivers beams of lithium or sodium with current 3…5 mA at a beam energy 20…25 keV. The neutralizer is based on the supersonic jet of sodium vapor formed by Laval nozzle. The first experiments of neutralizing the ion beam with a transverse supersonic atomic jet was done. Представлена разработка инжектора легких ионов и нейтрализатора для ПЭС-системы диагностики плазмы и первые экспериментальные результаты. Этот инжектор будет использован для диагностики плазмы с помощью пучка нейтральных атомов. Диагностические системы, основанные на нейтральных пучках атомов Li или Na, могут быть использованы для исследования пространственных профилей плотности плазмы, примесей ионов и распределения магнитного поля в пограничных областях плазмы термоядерных установок. Этот метод основан на регистрации свечения атомов зондирующего пучка, возбуждаемых электронами плазмы. Эти диагностические системы состоят из двух основных частей: инжектора нейтральных атомов (включающего ускоритель пучка ионов и нейтрализатор) и системы регистрации излучения. Ускоритель легких ионов, базирующийся на пятиэлектродной ионно-оптической системе, в отличие от классической трехэлектродной, позволяет получать пучки ионов лития или натрия с током 3…5 мА при энергии пучка 20…25 кэВ. Нейтрализатор основан на сверхзвуковой струе паров натрия, формируемой с помощью сопла Лаваля. Проведены первые эксперименты по нейтрализации пучка ионов с помощью поперечной сверхзвуковой струи. Представлена розробка інжектора легких іонів і нейтралізатора для системи ПЕС діагностики плазми та перші експериментальні результати. Цей інжектор буде використаний для діагностики плазми за допомогою пучка нейтральних атомів. Діагностичні системи, засновані на нейтральних пучках атомів Li або Na, можуть бути використані для дослідження просторових профілів густини плазми, домішкових іонів і розподілу магнітного поля в приграничних областях плазми термоядерних установок. Цей метод заснований на реєстрації світіння атомів зондуючого пучка, збуджуваних електронами плазми. Ці діагностичні системи складаються з двох основних частин: інжектора нейтральних атомів (що включає прискорювач пучка іонів і нейтралізатор) та системи реєстрації випромінювання. Прискорювач легких іонів, який базується на п’ятиелектродній іонно-оптичній системі, на відміну від класичної трьохелектродної, дозволяє отримувати пучки іонів літію або натрію зі струмом 3…5 мА при енергії пучка 20…25 кеВ. Нейтралізатор заснований на надзвуковому струмені пари натрію, формованої за допомогою сопла Лаваля. Проведені перші експерименти з нейтралізації пучка іонів за допомогою поперечного надзвукового струменя. 2012 Article The development of light ion injector for the plasma diagnostic system based on beam emission spectroscopy / A.A. Chmyga, G.N. Deshko, A.D. Komarov, A.S. Kozachek, L.I. Krupnik, S.M. Khrebtov, Yu.I. Tashchev, A.I. Zhezhera // Вопросы атомной науки и техники. — 2012. — № 6. — С. 252-254. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 52.70.Nc. http://dspace.nbuv.gov.ua/handle/123456789/109190 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Диагностика плазмы Диагностика плазмы |
spellingShingle |
Диагностика плазмы Диагностика плазмы Chmyga, A.A. Deshko, G.N. Komarov, A.D. Kozachek, A.S. Krupnik, L.I. Khrebtov, S.M. Tashchev, Yu.I. Zhezhera, A.I. The development of light ion injector for the plasma diagnostic system based on beam emission spectroscopy Вопросы атомной науки и техники |
description |
The development of light ion injector and neutralizer for the BES plasma diagnostic system and its first experimental results are presented in this work. This injector will be used for neutral beam plasma diagnostic systems. Diagnostic systems based on neutral beams of Li or Na atoms can be used to study the spatial plasma density profiles, impurity ions and magnetic field distribution in the border region of the plasma fusion devices. This method is based on the detection of the probe beam glow of atoms excited by the plasma electrons. These diagnostic systems consist of two main parts – the neutral beam injector (including the ion beam accelerator and neutralizer) and the secondary light signal registration system. Light ion beam accelerator based on the five-electrode ion-optical system, in contrast to the classical three-electrode system, delivers beams of lithium or sodium with current 3…5 mA at a beam energy 20…25 keV. The neutralizer is based on the supersonic jet of sodium vapor formed by Laval nozzle. The first experiments of neutralizing the ion beam with a transverse supersonic atomic jet was done. |
format |
Article |
author |
Chmyga, A.A. Deshko, G.N. Komarov, A.D. Kozachek, A.S. Krupnik, L.I. Khrebtov, S.M. Tashchev, Yu.I. Zhezhera, A.I. |
author_facet |
Chmyga, A.A. Deshko, G.N. Komarov, A.D. Kozachek, A.S. Krupnik, L.I. Khrebtov, S.M. Tashchev, Yu.I. Zhezhera, A.I. |
author_sort |
Chmyga, A.A. |
title |
The development of light ion injector for the plasma diagnostic system based on beam emission spectroscopy |
title_short |
The development of light ion injector for the plasma diagnostic system based on beam emission spectroscopy |
title_full |
The development of light ion injector for the plasma diagnostic system based on beam emission spectroscopy |
title_fullStr |
The development of light ion injector for the plasma diagnostic system based on beam emission spectroscopy |
title_full_unstemmed |
The development of light ion injector for the plasma diagnostic system based on beam emission spectroscopy |
title_sort |
development of light ion injector for the plasma diagnostic system based on beam emission spectroscopy |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2012 |
topic_facet |
Диагностика плазмы |
url |
http://dspace.nbuv.gov.ua/handle/123456789/109190 |
citation_txt |
The development of light ion injector for the plasma diagnostic system based on beam emission spectroscopy / A.A. Chmyga, G.N. Deshko, A.D. Komarov, A.S. Kozachek, L.I. Krupnik, S.M. Khrebtov, Yu.I. Tashchev, A.I. Zhezhera // Вопросы атомной науки и техники. — 2012. — № 6. — С. 252-254. — Бібліогр.: 7 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT chmygaaa thedevelopmentoflightioninjectorfortheplasmadiagnosticsystembasedonbeamemissionspectroscopy AT deshkogn thedevelopmentoflightioninjectorfortheplasmadiagnosticsystembasedonbeamemissionspectroscopy AT komarovad thedevelopmentoflightioninjectorfortheplasmadiagnosticsystembasedonbeamemissionspectroscopy AT kozachekas thedevelopmentoflightioninjectorfortheplasmadiagnosticsystembasedonbeamemissionspectroscopy AT krupnikli thedevelopmentoflightioninjectorfortheplasmadiagnosticsystembasedonbeamemissionspectroscopy AT khrebtovsm thedevelopmentoflightioninjectorfortheplasmadiagnosticsystembasedonbeamemissionspectroscopy AT tashchevyui thedevelopmentoflightioninjectorfortheplasmadiagnosticsystembasedonbeamemissionspectroscopy AT zhezheraai thedevelopmentoflightioninjectorfortheplasmadiagnosticsystembasedonbeamemissionspectroscopy AT chmygaaa developmentoflightioninjectorfortheplasmadiagnosticsystembasedonbeamemissionspectroscopy AT deshkogn developmentoflightioninjectorfortheplasmadiagnosticsystembasedonbeamemissionspectroscopy AT komarovad developmentoflightioninjectorfortheplasmadiagnosticsystembasedonbeamemissionspectroscopy AT kozachekas developmentoflightioninjectorfortheplasmadiagnosticsystembasedonbeamemissionspectroscopy AT krupnikli developmentoflightioninjectorfortheplasmadiagnosticsystembasedonbeamemissionspectroscopy AT khrebtovsm developmentoflightioninjectorfortheplasmadiagnosticsystembasedonbeamemissionspectroscopy AT tashchevyui developmentoflightioninjectorfortheplasmadiagnosticsystembasedonbeamemissionspectroscopy AT zhezheraai developmentoflightioninjectorfortheplasmadiagnosticsystembasedonbeamemissionspectroscopy |
first_indexed |
2025-07-07T22:41:10Z |
last_indexed |
2025-07-07T22:41:10Z |
_version_ |
1837029729078607872 |
fulltext |
252 ISSN 1562-6016. ВАНТ. 2012. №6(82)
THE DEVELOPMENT OF LIGHT ION INJECTOR FOR THE PLASMA
DIAGNOSTIC SYSTEM BASED ON BEAM EMISSION SPECTROSCOPY
A.A. Chmyga, G.N. Deshko, A.D. Komarov, A.S. Kozachek, L.I. Krupnik,
S.M. Khrebtov, Yu.I. Tashchev, A.I Zhezhera
Institute of Plasma Physics NSC “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine
Email: hibp@ipp.kharkov.ua
The development of light ion injector and neutralizer for the BES plasma diagnostic system and its first
experimental results are presented in this work. This injector will be used for neutral beam plasma diagnostic
systems. Diagnostic systems based on neutral beams of Li or Na atoms can be used to study the spatial plasma
density profiles, impurity ions and magnetic field distribution in the border region of the plasma fusion devices. This
method is based on the detection of the probe beam glow of atoms excited by the plasma electrons. These diagnostic
systems consist of two main parts – the neutral beam injector (including the ion beam accelerator and neutralizer)
and the secondary light signal registration system. Light ion beam accelerator based on the five-electrode ion-optical
system, in contrast to the classical three-electrode system, delivers beams of lithium or sodium with current
3…5 mA at a beam energy 20…25 keV. The neutralizer is based on the supersonic jet of sodium vapor formed by
Laval nozzle. The first experiments of neutralizing the ion beam with a transverse supersonic atomic jet was done.
PACS: 52.70.Nc.
INTRODUCTION
Beam Emission Spectroscopy (BES) is used to study
space plasma density profiles, impurity ions and
magnetic field distribution in the edge zone of fusion
plasmas. This method is based on the registration of
optical light radiation from the neutral probe beam
exited by the plasma electrons and ions [1]. Diagnostic
systems basically based on neutral beams of fast Li or
Na atoms [2]. These diagnostic systems consist on two
main parts – the neutral beam injector (including ion
beam accelerator and neutralizer) and the secondary
light signal registration system.
1. THE ION OPTICS SYSTEM FOR LIGHT
ION BEAM INJECTOR
The ion accelerating system in this project is based
on a five-electrode ion optics system instead of the
classical three-electrode [1-4]. Implementation of
additional electrodes allows for ion beam focusing
regardless from extraction voltage. This design also
allows to focus the ion beam with high ion current and
relatively low energy beam (up to 35 keV), which is
impossible for the classical three-electrode lens.
Extractor voltage in traditional systems must be closely
related to the energy of the beam in order to focus the
beam in the neutralizer. This ratio limits the value of ion
current for a given beam energy and focusing distance.
In new ion optical system with additional focusing
electrode the value of extraction voltage can be
increased and the ion current also can be increased
while maintaining the beam focal length.
The numerical calculations of the ion and neutral
beam trajectories with energy up to 70 keV and the ion
current up to 6 mA were carried out by SIMION 3D
code in the initial stage of ion optics system elaboration.
Main attention was directed to the beam energy of up to
35 keV that is optimal for the beam neutralization.
These calculations determine the geometrical
parameters of the electrodes and their space locations.
The ion optics system of light ion (Li+ and Na+)
injector elaboration was based on the calculations of ion
beam current lines for the certain energy and current.
The main purpose of these calculations is to obtain the
ion beam optimally focused in the neutralization area
with 0.1…0.30 deviation with a beam diameter
20…40 mm inside the neutralization area. With these
parameters we will have a neutral beam focus of 10 mm
diameter at a distance of 2.5…3 m from the injector.
These calculations and the real experimental design
illustrated by Fig. 1.
Fig. 1. The calculations of the five-electrode ion-optics
system by SIMION 3D code
After ion optics system elaboration, manufacturing
and investigations of Li and Na ion beam focusing the
system was able to produce the ion beam with an energy
20…25 keV and 3…4 mA of ion current. Ion beam
parameters were controlled by the wire detector and
additional collector placed in the position instead of the
future neutralizer. Space profile distribution of the ion
beam from the injector was measured using a four-rods
wire detector by ion beam scanning with two pairs of
electrostatic deflection plates, placed in the horizontal
and vertical positions. The wire detector was placed
30 cm apart from the first scanning plates (in the future
neutralizer placement). The distance between wires was
40 mm in the vertical and horizontal positions. The
ISSN 1562-6016. ВАНТ. 2012. №6(82) 253
scanning voltage was ± 3 kV, 50 Hz sinusoidal. These
measurements were done by scanning of the ion beam
using deflection plates across the wire detector and by
registration of the additional collector current.
Fig. 2. Ion beam space profile from the wire detector
(blue and yellow lines) and additional collector current
in the neutralization area (violet line) for Li ion beam
with energy 25 keV; (a) - ion current 4 mA, emitter
heating power 250 W, (b) - ion current 3 mA, emitter
heating power 200 W
So, the ion beam diameter in the neutralizer area
increases from 16 mm to 22 mm when ion current
grows from 3 to 4 mA. The ion optics system allows us
to obtain a slightly converging beam inside neutralizer
and so to have the 10 mm diameter neutral beam inside
plasma.
2. SODIUM VAPOR SUPERSONIC ION
BEAM NEUTRALIZER
The neutralizer is necessary to convert the light ion
lithium or sodium beams into fast atomic beams. The
neutralizer design with ion beam passing through
sodium vapor cloud is operated, in particular, in
ASDEX-U [3, 4]. This BES diagnostic system uses
35 keV ion beam and have 97% neutralization
efficiency at this energy. The linear density of sodium
atoms is nl = 1×1015 см-2 in 120 mm long neutralization
tube in this case, so the sodium atoms density is
about 8×1013 см-3. Sodium vapor comes into neutralizer
from heated volume (oven) with sodium metal. The
sodium temperature in the oven is about 2500 C. The
main disadvantage of this design is that sodium vapor is
spreading in bough directions from neutralizer volume
along the beam trajectory – towards accelerator and
plasma volume. The metal sodium appearance in
accelerator leads to decreasing the electric insulation
features and possible electrical breakdowns; the sodium
appearance in the fusion plasma causes its cooling. The
using of transverse sodium stream injection across ion
beam will eliminate these disadvantages.
Papers [5, 6, 7] shows that transverse supersonic vapor
stream of different substances may effectively used to
provide the positive ion’s neutralization and negative
ion beam production without substantially
contamination of beam-line by neutralizer substance.
The neutralizer design is shown in Fig. 3. Fig. 4 shows
expected sodium vapor flux profile from Laval nozzle.
To verify the neutralization efficiency of this system the
light ion’s accelerator based on four-electrode lens was
attached to neutralizer entrance port, see Fig. 5. The
Faraday cup was installed behind neutralizer for ion
current measurements. The 3.5 keV sodium ion beam
with ion current up to 40 µA is used in these
experiments. The measured ion beam current on
Faraday external electrode is less than 2 µA, ion current
on Faraday cup inner electrode is up to 40 µA. Fig. 6
illustrates the sodium stream pattern on the cooler
surface. This pattern corresponds to the calculated
sodium vapor stream space distribution inside
neutralizer. Ion current drop on Faraday cup during
pulse opening of the sodium stream valve is up to 78%.
Fig. 3. Sodium vapor supersonic neutralizer design
Fig. 4. Sodium vapor stream flux outflow space
distribution from Laval nozzle
Fig. 5. Neutralizer testing device with small ion beam
accelerator
Fig. 6. Oxidezed sodium vapor stream pattern on the
cooler surface during approximately 1 hour air
exposition after vacuum chamber opening
254 SSN 1562-6016. ВАНТ. 2012. №6(82)
CONCLUSIONS
The ion-optics system of light ion beam injector for
BES diagnostics was developed. This system has five
electrodes, instead of three electrodes, which is usually
used for this purpose. The additionally electrodes allow
to focus the ion beam in the neutralization volume
independently from energy of the ion beam and
extracting voltage. By using this kind of ion optics it is
possible to obtain large values of ion current for smaller
ion energies. The possibility of alkali ion beam
neutralization by transverse supersonic sodium vapor
stream was proved in this experiment, practically for the
developed design of neutralizer units. The neutralization
coefficient was from 60 to 78 % during the pulse vapor
stream operations.
ACKNOWLEDGEMENT
This work is supported by STCU 4703 Project.
REFERENCES
1. K. Kadota et al. Plasma diagnostics by neutral beam
probing // Plasma Phys., 1978, v. 20, p. 1011-1023.
2. L.I. Krupnik, N.V. Samokhvalov, Yu.V. Trofimenko.
Advantages of Using Sodium Atoms in Beam Emission
Spectroscopy // Plasma Physics. 1994, v. 20, № 2,
p. 186-188.
3. K. McCormick, S. Fiedler, G. Kocsis, J. Schweinzer,
S. Zoletnik. Edge density measurements with a fast Li
beam probe in tokamak and stellarator experiments // Fusion
Engineering and Design. 1997, v. 34-35, p. 125-134.
4. E.Wolfrum, F. Aumayr, D. Wutte, H.P. Winter,
E. Hintz, D. Rusbüldt, R.P. Schorn. Fast lithium-beam
spectroscopy of tokamak edge plasmas // Rev. Sci.
Instrum., Aug. 1993, v. 64, issue 8, p. 2285-2292.
5. Ya.M. Fogel, G.A. Lisochkin, G.I. Stepanova.
Supersonic mercury vapor outflow in vacuum // JTF.
1955, v. 25, issue 11, p. 1945-1953 (in Russian).
6. L.I. Krupnik. Hydrogen negative ions source based
on phenomenon of electron capture by positive ions
during its passing through matter: Dissertation for the
degree of Candidate of Physical and Mathematical
Sciences, Kharkov – 1956 (in Russian).
7. Yu. Agafonov, B.A. Dyachkov, M.A. Pavliy. The
choice of the target material for the charge-exchange ion
source, H- and D-: the conversion factor and the
scattering angle of the ions in the targets of Cs and Na //
JTF. 1980, v. 50, issue 10, p. 2163-2168 (in Russian).
Article received 24.10.12
РАЗРАБОТКА ИНЖЕКТОРА ЛЕГКИХ ИОНОВ ДЛЯ СИСТЕМЫ ДИАГНОСТИКИ ПЛАЗМЫ НА
ОСНОВЕ ПУЧКОВОЙ ЭМИССИОННОЙ СПЕКТРОСКОПИИ
А. Чмыга, Г. Дешко, А. Комаров, А. Козачек, Л. Крупник, С. Хребтов, Ю. Тащев, А. Жежера
Представлена разработка инжектора легких ионов и нейтрализатора для ПЭС-системы диагностики
плазмы и первые экспериментальные результаты. Этот инжектор будет использован для диагностики
плазмы с помощью пучка нейтральных атомов. Диагностические системы, основанные на нейтральных
пучках атомов Li или Na, могут быть использованы для исследования пространственных профилей
плотности плазмы, примесей ионов и распределения магнитного поля в пограничных областях плазмы
термоядерных установок. Этот метод основан на регистрации свечения атомов зондирующего пучка,
возбуждаемых электронами плазмы. Эти диагностические системы состоят из двух основных частей:
инжектора нейтральных атомов (включающего ускоритель пучка ионов и нейтрализатор) и системы
регистрации излучения. Ускоритель легких ионов, базирующийся на пятиэлектродной ионно-оптической
системе, в отличие от классической трехэлектродной, позволяет получать пучки ионов лития или натрия с
током 3…5 мА при энергии пучка 20…25 кэВ. Нейтрализатор основан на сверхзвуковой струе паров натрия,
формируемой с помощью сопла Лаваля. Проведены первые эксперименты по нейтрализации пучка ионов с
помощью поперечной сверхзвуковой струи.
РОЗРОБКА ІНЖЕКТОРА ЛЕГКИХ ІОНІВ ДЛЯ СИСТЕМИ ДІАГНОСТИКИ ПЛАЗМИ НА ОСНОВІ
ПУЧКОВОЇ ЕМІСІЙНОЇ СПЕКТРОСКОПІЇ
О. Чмига, Г. Дешко, О. Комаров, О. Козачок, Л. Крупнік, С. Хребтов, Ю. Тащев, О. Жежера
Представлена розробка інжектора легких іонів і нейтралізатора для системи ПЕС діагностики плазми та
перші експериментальні результати. Цей інжектор буде використаний для діагностики плазми за допомогою
пучка нейтральних атомів. Діагностичні системи, засновані на нейтральних пучках атомів Li або Na, можуть
бути використані для дослідження просторових профілів густини плазми, домішкових іонів і розподілу
магнітного поля в приграничних областях плазми термоядерних установок. Цей метод заснований на
реєстрації світіння атомів зондуючого пучка, збуджуваних електронами плазми. Ці діагностичні системи
складаються з двох основних частин: інжектора нейтральних атомів (що включає прискорювач пучка іонів і
нейтралізатор) та системи реєстрації випромінювання. Прискорювач легких іонів, який базується на п’яти-
електродній іонно-оптичній системі, на відміну від класичної трьохелектродної, дозволяє отримувати пучки
іонів літію або натрію зі струмом 3…5 мА при енергії пучка 20…25 кеВ. Нейтралізатор заснований на
надзвуковому струмені пари натрію, формованої за допомогою сопла Лаваля. Проведені перші
експерименти з нейтралізації пучка іонів за допомогою поперечного надзвукового струменя.
|