2025-02-22T23:32:11-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-109264%22&qt=morelikethis&rows=5
2025-02-22T23:32:11-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-109264%22&qt=morelikethis&rows=5
2025-02-22T23:32:11-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-22T23:32:11-05:00 DEBUG: Deserialized SOLR response

Alfven wave instability based on temperature anisotropy with non-maxwellian distribution function

Space observations by numerous satellites reveal that the distributions often possess non-Maxwellian characteristics such as high energy tails or flat top (broad shoulders) in the profile of distribution functions. Distributions with high energy tails are well modelled by family of kappa type distri...

Full description

Saved in:
Bibliographic Details
Main Authors: Qureshi, M.N.S., Saeed, Sundas, Shah, H.A.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Series:Вопросы атомной науки и техники
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/109264
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Space observations by numerous satellites reveal that the distributions often possess non-Maxwellian characteristics such as high energy tails or flat top (broad shoulders) in the profile of distribution functions. Distributions with high energy tails are well modelled by family of kappa type distribution. However, when distributions contain flat tops with or without high energy particles, generalized (r,q) distribution function is the best choice. In general the spectral index r corresponds to the flat part of the distribution and q to the high energy tail in the profile of the distribution function. By following the kinetic theory, we employ this distribution function to study the Alfven waves in anisotropic plasma and found that Alfven wave can grow when there is temperature anisotropy in plasma. Instability conditions are then studied for different temperature ratios by using the plasma parameters observed downstream the bow shock by CLUSTER.