Синтез логистической регрессии на принципах самоорганизации моделей
В работе решается задача структурно-параметрического синтеза модели логистической регрессии. Предложенный алгоритм осуществляет автоматическую оптимизацию параметров шагового алгоритма многомерной логистической регрессии на принципах самоорганизации моделей. Оптимизация параметров осуществляется с п...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Міжнародний науково-навчальний центр інформаційних технологій і систем НАН України та МОН України
2015
|
Назва видання: | Кибернетика и вычислительная техника |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/110304 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Синтез логистической регрессии на принципах самоорганизации моделей / Е.А. Настенко, А.Л. Бойко, В.А. Павлов, К.И. Тепляков // Кибернетика и вычислительная техника. — 2015. — Вип. 182. — С. 85-93. — Бібліогр.: 8 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | В работе решается задача структурно-параметрического синтеза модели логистической регрессии. Предложенный алгоритм осуществляет автоматическую оптимизацию параметров шагового алгоритма многомерной логистической регрессии на принципах самоорганизации моделей. Оптимизация параметров осуществляется с помощью предложенного внешнего критерия баланса, отражающего точность классификации на обучающей и проверочных выборках, с одной стороны, и требование к балансу качества распознавания в каждом классе, с другой. Рассмотрен пример моделирования классификатора функциональных состояний сердечнососудистой системы человека. Сравнение результатов моделирования стандартным и предложенным алгоритмами показало преимущество последнего на экзаменационной выборке данных. |
---|