Modelling of Maxwell’s equations using uniform finite elements

The theory of numerical stability of weighted residuals schemes for Maxwell’s equations written in terms of electric field is presented. Basing on it, the numerically stable scheme using physical components of electric field and uniform trial functions is developed. The proposed scheme is tested in...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автор: Moiseenko, V.E.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2003
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/110484
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Modelling of Maxwell’s equations using uniform finite elements / V.E. Moiseenko // Вопросы атомной науки и техники. — 2003. — № 1. — С. 82-84. — Бібліогр.: 1 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-110484
record_format dspace
spelling irk-123456789-1104842017-01-05T03:02:53Z Modelling of Maxwell’s equations using uniform finite elements Moiseenko, V.E. Basic plasma physics The theory of numerical stability of weighted residuals schemes for Maxwell’s equations written in terms of electric field is presented. Basing on it, the numerically stable scheme using physical components of electric field and uniform trial functions is developed. The proposed scheme is tested in cylindrical geometry and compared with the numerically stable Galerkin scheme. The tests show the evidence of numerical stability of the scheme proposed. The convergence is monotonic and corresponds to the order of approximation. It is demonstrated that, unlike the Galerkin scheme, the scheme proposed is much less sensitive to the stiffness of the Maxwell’s equations in plasma. В роботі подана теорія числової стійкості схем зважених нев’язок, що застосовані до рівнянь Максвела з виключеним магнітним полем. На її основі розроблена чисельно стійка схема, яка використовує фізичні компоненти електричного поля та однорідні пробні функції. Для цієї схеми проведено тестування у порівнянні зі схемою Гальоркіна. Воно підтвердило числову стійкість запропонованої схеми. Аналіз збігання показав, що воно є монотонне і відповідне до порядку апроксимації. Тестові розрахунки продемонстрували, що в порівнянні зі схемою Гальоркіна запропонована схема є суттєво менш чуйною до жорсткості рівнянь Максвела в плазмовому середовищі. В работе представлена теория численной устойчивости схем взвешенных невязок применительно к уравнениям Максвелла с исключенным магнитным полем. На ее основе разработана численно устойчивая схема, использующая физические компоненты электрического поля и однородные пробные функции. Для этой схемы проведено тестирование в сравнении со схемой Галеркина. Оно подтвердило численную устойчивость предложенной схемы. Анализ сходимости показал, что она является монотонной и соответствует порядку аппроксимации. Тестовые расчеты продемонстрировали, что по сравнению со схемой Галеркина предложенная схема значительно менее чувствительна к жесткости уравнений Максвелла в плазменной среде. 2003 Article Modelling of Maxwell’s equations using uniform finite elements / V.E. Moiseenko // Вопросы атомной науки и техники. — 2003. — № 1. — С. 82-84. — Бібліогр.: 1 назв. — англ. 1562-6016 PACS: 52.25.-b http://dspace.nbuv.gov.ua/handle/123456789/110484 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Basic plasma physics
Basic plasma physics
spellingShingle Basic plasma physics
Basic plasma physics
Moiseenko, V.E.
Modelling of Maxwell’s equations using uniform finite elements
Вопросы атомной науки и техники
description The theory of numerical stability of weighted residuals schemes for Maxwell’s equations written in terms of electric field is presented. Basing on it, the numerically stable scheme using physical components of electric field and uniform trial functions is developed. The proposed scheme is tested in cylindrical geometry and compared with the numerically stable Galerkin scheme. The tests show the evidence of numerical stability of the scheme proposed. The convergence is monotonic and corresponds to the order of approximation. It is demonstrated that, unlike the Galerkin scheme, the scheme proposed is much less sensitive to the stiffness of the Maxwell’s equations in plasma.
format Article
author Moiseenko, V.E.
author_facet Moiseenko, V.E.
author_sort Moiseenko, V.E.
title Modelling of Maxwell’s equations using uniform finite elements
title_short Modelling of Maxwell’s equations using uniform finite elements
title_full Modelling of Maxwell’s equations using uniform finite elements
title_fullStr Modelling of Maxwell’s equations using uniform finite elements
title_full_unstemmed Modelling of Maxwell’s equations using uniform finite elements
title_sort modelling of maxwell’s equations using uniform finite elements
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2003
topic_facet Basic plasma physics
url http://dspace.nbuv.gov.ua/handle/123456789/110484
citation_txt Modelling of Maxwell’s equations using uniform finite elements / V.E. Moiseenko // Вопросы атомной науки и техники. — 2003. — № 1. — С. 82-84. — Бібліогр.: 1 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT moiseenkove modellingofmaxwellsequationsusinguniformfiniteelements
first_indexed 2023-10-18T20:22:13Z
last_indexed 2023-10-18T20:22:13Z
_version_ 1796149682823495680