Application of nuclear physics methods and NSC KIPT accelerators for investigation of solid composition

The results of application of nuclear physics methods and NSC KIPT accelerators in the fields of investigation of metals and alloys, semiconductors, oxidic metals and magnetic materials are outline. The results and potentialities of these methods for determination of concentration and distribution o...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автори: Skakun, N.A., Svetashov, P.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2003
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/110843
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Application of nuclear physics methods and NSC KIPT accelerators for investigation of solid composition / N.A. Skakun, P.A. Svetashov // Вопросы атомной науки и техники. — 2003. — № 2. — С. 108-110. — Бібліогр.: 33 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-110843
record_format dspace
spelling irk-123456789-1108432017-01-07T03:04:23Z Application of nuclear physics methods and NSC KIPT accelerators for investigation of solid composition Skakun, N.A. Svetashov, P.A. Application of the nuclear methods The results of application of nuclear physics methods and NSC KIPT accelerators in the fields of investigation of metals and alloys, semiconductors, oxidic metals and magnetic materials are outline. The results and potentialities of these methods for determination of concentration and distribution of micro quantities of elements and isotopes, investigation of features and properties of simplest defects are presented. The beams of (1–3) MeV hydrogen and helium ions were used. Element and isotope identification was realized by means of Rutherford backscattering, resonance nuclear reactions and incident ions induced X – ray radiation. Викладаються результати застосування методів ядерної фізики і прискорювачів ННЦ ХФТИ в області металів і сплавів, напівпровідників, метало оксидних з'єднань, магнітних матеріалів. Результати і можливості використання цих методів для визначення концентрації і розподілу мікрокількостей елементів і ізотопів, дослідження характеристик і властивостей найпростіших дефектів. Застосовувалися іони ізотопів водню і гелію з енергією в інтервалі (1...3) МеВ Ідентифікація елементів і ізотопів здійснювалася за допомогою зворотного розсіювання, резонансних ядерних реакцій і характеристичного рентгенівського випромінювання, порушуваного прискореними іонами. Излагаются результаты применения методов ядерной физики и ускорителей ННЦ ХФТИ в области металлов и сплавов, полупроводников, металлооксидов, магнитных материалов. Представлены результаты и возможности использования этого научного направления для определения концентрации и распределения микроколичеств элементов и изотопов, исследования характеристик и свойств простейших дефектов и др. вопросы. Применялись ионы изотопов водорода и гелия с энергией в интервале (1...3.5) МэВ. Идентификация элементов и их изотопов осуществлялась с помощью обратного рассеяния, резонансных ядерных реакций и характеристического рентгена, возбуждаемого ускоренными ионами. 2003 Article Application of nuclear physics methods and NSC KIPT accelerators for investigation of solid composition / N.A. Skakun, P.A. Svetashov // Вопросы атомной науки и техники. — 2003. — № 2. — С. 108-110. — Бібліогр.: 33 назв. — англ. 1562-6016 PACS: 24.30.-v, 68.35.Dv, 68.35.Ln, 61.72.Ji http://dspace.nbuv.gov.ua/handle/123456789/110843 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Application of the nuclear methods
Application of the nuclear methods
spellingShingle Application of the nuclear methods
Application of the nuclear methods
Skakun, N.A.
Svetashov, P.A.
Application of nuclear physics methods and NSC KIPT accelerators for investigation of solid composition
Вопросы атомной науки и техники
description The results of application of nuclear physics methods and NSC KIPT accelerators in the fields of investigation of metals and alloys, semiconductors, oxidic metals and magnetic materials are outline. The results and potentialities of these methods for determination of concentration and distribution of micro quantities of elements and isotopes, investigation of features and properties of simplest defects are presented. The beams of (1–3) MeV hydrogen and helium ions were used. Element and isotope identification was realized by means of Rutherford backscattering, resonance nuclear reactions and incident ions induced X – ray radiation.
format Article
author Skakun, N.A.
Svetashov, P.A.
author_facet Skakun, N.A.
Svetashov, P.A.
author_sort Skakun, N.A.
title Application of nuclear physics methods and NSC KIPT accelerators for investigation of solid composition
title_short Application of nuclear physics methods and NSC KIPT accelerators for investigation of solid composition
title_full Application of nuclear physics methods and NSC KIPT accelerators for investigation of solid composition
title_fullStr Application of nuclear physics methods and NSC KIPT accelerators for investigation of solid composition
title_full_unstemmed Application of nuclear physics methods and NSC KIPT accelerators for investigation of solid composition
title_sort application of nuclear physics methods and nsc kipt accelerators for investigation of solid composition
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2003
topic_facet Application of the nuclear methods
url http://dspace.nbuv.gov.ua/handle/123456789/110843
citation_txt Application of nuclear physics methods and NSC KIPT accelerators for investigation of solid composition / N.A. Skakun, P.A. Svetashov // Вопросы атомной науки и техники. — 2003. — № 2. — С. 108-110. — Бібліогр.: 33 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT skakunna applicationofnuclearphysicsmethodsandnsckiptacceleratorsforinvestigationofsolidcomposition
AT svetashovpa applicationofnuclearphysicsmethodsandnsckiptacceleratorsforinvestigationofsolidcomposition
first_indexed 2025-07-08T01:14:10Z
last_indexed 2025-07-08T01:14:10Z
_version_ 1837039355232780288
fulltext APPLICATION OF NUCLEAR PHYSICS METHODS AND NSC KIPT AC- CELERATORS FOR INVESTIGATION OF SOLID COMPOSITION N.A. Skakun, P.A. Svetashov National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine e-mail skakun@kipt.kharkov. The results of application of nuclear physics methods and NSC KIPT accelerators in the fields of investigation of metals and alloys, semiconductors, oxidic metals and magnetic materials are outline. The results and potentialities of these methods for determination of concentration and distribution of micro quantities of elements and isotopes, in- vestigation of features and properties of simplest defects are presented. The beams of (1–3) MeV hydrogen and heli- um ions were used. Element and isotope identification was realized by means of Rutherford backscattering, reso- nance nuclear reactions and incident ions induced X – ray radiation. PACS: 24.30.-v, 68.35.Dv, 68.35.Ln, 61.72.Ji 1. INTRODUCTION The works of S. Rabin published during 1949–62 are considered by the world scientist society to be first ap- plication of accelerators for analysis of substances by means of prompt radiation measurements. In the Former Soviet Union utilization of the prompt radiation of nuclear reactions for analytical aims was firstly realized by E.V. Inopin, S.P. Tsytko (Ukraine In- stitute of Physics and Technology, Kharkov) and M.I. Guseva (Institute of Atomic Energy, Moscow) in 1959 [2]. These authors investigated the depth profile and distribution nature of silicon atoms implanted into copper and titanium. The resonances of 28Si(p,γ)29P re- action were used to resolve this problem. 2. METHODS AND THEIR APPLICATION Rutherford backscattering, nuclear reactions, charged particle induced Х- rays, activation analysis are systematically used at KIPT to solve science and tech- nological problems in the field of metals and alloys [3- 16], semiconductors [18-31], magnetic materials [32,33], radiation physics [21,23,24,28,33], physics of metal oxide combinations including of high – T super- conductors [34,35,36], analytical chemistry, environ- ment objects analysis. In prompt radiation analysis the presence of an ele- ment is detected through the nuclear radiations emitted instantaneously from nuclear reactions produced in the target by the irradiating beam. One of the important ad- vantages of prompt analysis and the backscattering tech- niques is that they can be used to measure the depth dis- tribution of elements in the surface or near-surface re- gions of the sample. The dependence of the characteris- tics of the emitted radiation on depth is due to the ener- gy loss suffered by the incident ions as they penetrate into the sample and also to the energy losses suffered by charged particles emitted from the reaction as they emerge from within the sample. Since nuclear reaction analysis can provide essen- tially background-free detection of light elements, depth distributions of trace amounts within the near-surface region can de measured. The primary emphasis in our discussion of prompt radiation analysis is the determina- tion of concentration depth profiles of trace element im- purities. In the use of prompt analysis for depth profiles, two different methods are applied, namely, the energy- analysis method and the resonance method. The former is used when the cross section of a nuclear reaction is a smoothly varying function of energy. The latter method is used when a sharp peak (resonance) in the cross sec- tion as a function of energy is present, and the depth profile is derived from a measurement of the nuclear re- action yield as a function of the energy of the analyzing beam. Widespread application of accelerators and nuclear physics methods is conditioned by possibility to deter- mine kind, concentration and distribution of element mi- cro quantities to research migration and diffusion mobil- ity of these elements and their isotopes. Using orienta- tion effects and channeling particles promotes: − to find location of atoms implanted in to the lattice or (in the case of complicated crystals) to determine sublattice in which implanted ions are placed; − to determine profile of distribution of implanted atoms and radiation defects created by the implantation; − to search composition, structure, orientation, pro- duction and decay of simplest defects; − to search mechanism and features of ion motion in well-ordered surroundings etc. To identify elements and isotopes we used Ruther- ford backscattering and nuclear scattering of hydrogen and helium ions, the ion induced X-rays as well as prompt radiation of reactions are given in the following table: Reaction Ref. Reaction Ref. 18O(p,γ)19F [3,4] 9Be(α,nγ)12C [27,2] 18О(р,α)15О [5,6,9,16] 23Na(p,α)20Ne [19] D(3He,p)4H [10,11] 16O(3He4He)15O [31] 10B(α,p)13C [7,8] 16O(α,α)16O [33] 11B(p,α1)8Be [15,25] 7Li(p,α)4He [30] 31P(p,α)28S [18,21] − − 108 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2003, № 2. Series: Nuclear Physics Investigations (41), p. 108-110. The data of basic investigations in the fields of nu- clear spectroscopy and atomic nucleus structure are pre- condition of these experiments. 3. METALS AND ALLOYS During 1964-1970 the nuclear physics methods and KIPT accelerators were applied for study of zirconium oxidation and oxygen diffusion in zirconium, niobium and their alloys. To solve the problems it was proposed to use radiation of the resonance reactions (p,γ) [3,4] and (p,α) [5,6,] which occur at the interaction of inci- dent protons with 18O isotope nuclei. The coefficients of oxygen diffusion in zirconium and niobium were de- termined in the wide range of temperature [7,8]. The mechanism of anion and cation transfer by oxidation process in gas and steam of the water was studied. For the first time in the Former Soviet Union (1969) the method of composition matter analysis by proton and α-particle induced X-ray radiation was proposed in KIPT. This perspective technique which is widely used in the world at present was successfully developed due to working out and creation of semiconductor Si(Li)-de- tectors for X-ray spectrometers. Qualitative new stage in application of accelerators and nuclear physics methods began since discovery of aligned effects. KIPT team was one of the first scientific groups which observed fundamental effect – redistribu- tion of particle flux density in transverse plane of chan- nel [9]. Using channeling protons and helium ions permited to determine location of oxygen and deuterium atoms in niobium [9,10], helium in tungsten [11], boron in tung- sten [12], nitrogen in niobium and molybdenum [13,14], carbon in rhenium and nickel [15], oxygen in tanta- lum [16]. 4. SEMICONDUCTORS Localization of atoms of boron and phosphorus which are widely used elements in microelectronics in- strument production technology was determined in sili- con by channeling particle method [17,18,21]. Besides depth profiles of interstitial atoms and radiation damage silicon atoms were found [20,22,23]. Thermal stability of defects was fixed. Optimal conditions of base struc- ture forming were determined. The cycle of investigations of ion implanted 3A5B binary compounds (indium antimonide, indium ar- senide, indium phosphide, gallium arsenide) was carried out analysing prompt radiation induced by channeling particles [24]. Data concerning localization of atoms of 1-st and 2-nd periods of the element table in 3A5B were obtained [25]. Modification of implanted atom localiza- tion caused by irradiation and annealing was fixed [26]. The regularities of forming and annealing radiation de- fects in implanted structures were studied. Depth pro- files of implanted atoms and radiation defects were de- termined. The contribution of sublattices in the radiation defect production process was determined. The results of these works served as a foundation for development and optimization of basic structure technology of infra- red (IR) detectors. It shown IR–detectors with optimum parameters can be made on the base of beryllium – doped indium antimonide [27,28]. 5. METAL OXIDES AND MAGNETIC MATE- RIALS Combination of nuclear physics methods and charged particle accelerators turned out the perspective way of investigation of composition and properties of oxidic metal compounds including high–Tc supercon- ductor ones [30]. It was carried out the cycle of works for the sake of optimization of making technology of La2-xSrxCuO4 and Nd2-xCexCuO4 crystals [31]. The crystal structure modification was investigated depend- ing on furnace charge and agglomeration conditions. It was shown oxide sublattice has larger radiation destruc- tion rate in comparison with cation one. The diffusion coefficients of oxygen to YBa2Cu3O7-y were deter- mined [32]. Application nuclear physics methods and accelera- tors for investigation of properties of ferrite oxide metal compounds, which are used in magneto–optics, comput- er engineering and quantum electronics is essentially only started now. Tl4+ and Tl3+ ions in the corund crystal lattice are shown to be placed in tetrahedral in- terstitial space and interstitial space which is shifted along the <0001> direction of the aluminum sublattice [29]. There was found the localization of the boron and nitrogen atoms in the ferrogarnet film lattice. The im- planted alloy ion distribution and distribution of radia- tion defects created by the ions were determined [33]. REFERENCES 1. Proceeding of the Ninth International Conference on Ion Beam Analysis (Preface) // Nuclear Instruments & Methods B. 1990, v. 45, №1-4, p. vii. 2. M.I. Huseva, E.B. Inopin, C.P. Zitko. Depth of penetrate and character distribution of implant atoms in target 30Si // ZhETF. 1959, v. 36, p. 5-7 (in Russian). 3. N.A. Skakun, O.N. Kharkov. Investigation of oxygen distribution by using of the 18O(p,γ)19F re- action // Atomnaya Energiya. 1969, v. 27, №4, p. 351-352 (in Russian). 4. N.A. Skakun, O.N. Kharkov. Using of 18O(p,γ) 19F reaction for investigation a oxide layers on the metals // Atomnaya Energiya. 1970, v. 30, №5, p. 456-458 (in Russian). 5. G.B. Fedorov, N.A. Skakun, G.V. Fetisov. Study of oxygen diffusion in zirconium by means of the 18O (p,α)15N reaction // Fizika Metallov i Metallovedenie. 1973, v. 35, №5, p. 978-981 (in Russian). 6. G.B. Fedorov, G.V. Fetisov, N.A. Skakun. Study of oxygen diffusion in niobium by means of 18O isotope // Fizika Metallov i Metallovedenie. 1974, v. 38, №2, p. 361-365 (in Russian). 7. O.H. Belous, N.P. Dikij, N.A. Skakun at al. Use of nuclear reactions for study of border boron segregation in the molibdenum alloy // Doclady 109 Akademii Nauk SSSR. 1980, v. 255, №3, p. 562- 564 (in Russian). 8. O.H. Belous, N.P. Dikij, N.A. Skakun at al. Study of boron segregation in the molibdenum al- loy means of the nuclear reaction // Fizika Met- allov i Metallovedeniye. 1980, v. 52, №3, p. 544- 551(in Russian). 9. P.P. Matyash, N.P. Dikij, N.A. Skakun. Use of proton channeling for oxygen location determi- nation in niobium crystal // Pis’ma ZhETF. 1974, v. 19, №81, p. 31-33 (in Russian) 10. N.A. Skakun, P.P. Matyash, N.P. Dikij, P.A. Svetashov. Determination of deuterium loca- tion in the niobium lattice by means of D(3He,4He)p reaction. // Jurnal Tehnicheskoj Fizi- ki. 1975, v. 38, p. 207-209 (in Russian) 11. N.A. Skakun, N.P. Dikij, P.A. Svetashov. Study of the helium atom location in the wolframi- um crystal lattice // Fizika Tverdogo Tela. 1979, v. 21, №10, p. 3141-3143 (in Russian). 12. N.A. Skakun, P.P. Matyash, N.P. Dikij. Use of proton channeling for determination of boron atom location in the wolframium lattice // Ukrain- skij Fizicheskij Jurnal. 1974, v. 19, №10, p. 1609- 1612 (in Russian). 13. N.A. Skakun, P.A. Svetashov, A.G. Strashinskij. Lattice location of nitrogen in niobium using the reaction 15N(p,αγ)12C // Radia- tion Effects Letters. 1983, v. 68, p. 169-172. 14. N.A. Skakun, P.A. Svetashov, A.A. Zigica- lo. Study of lattice site location of nitrogen atoms in niobium and molibdenum. // Trudy XI Vs- esoyusnogo soveshaniya po fizike vzaimodejstviy zaryazhennekh chastiz s kristallami. Moscow: “MGU”, 1982, p. 381-386 (in Russian). 15. N.A. Skakun, V.A. Oleinik at al. Channeling study of carbon atom location in Re-Cx and Ni-Cx systems // Nucl. Instr. Meth. B. 1992, v. 67, p. 199- 202. 16. N.A. Skakun, P.A. Svetashov. Lattice site location of oxygen and nitrogen in tantalum // Ukrainskij Fizicheskij Jurnal. 1996, v. 41, №9, p. 854-858 (in Russian). 17. N.A. Skakun, N.P. Dikij at al. Lattice site lo- cation of boron in silicon resulted from implanta- tion and following annealing // Fizika Tverdogo Tela. 1974, v. 16, №4, p. 1032-1036 (in Russian). 18. N.A. Skakun, N.P. Dikij at al.Study of the phosphor atom location in the silicon lattice by means 31P(p,α)28Si reaction // Fizika i Tehika poluprovodnicov. 1975, v. 9, №4, p. 755-756 (in Russian). 19. N.A. Skakun, N.P. Dikij at al. Lattice site lo- cation of the natrium atoms implanted into silicon // Fizika Tverdogo Tela. 1973, v. 15, №1, p. 180- 183 (in Russian). 20. N.A. Skakun, N.P. Dikij, P.P. Matyash. Some features of radiation damage distribution of silicon implanted by boron ions // Fizika i Tehnika Poluprovodnicov. 1974, v. 8, №7, p. 1316-1319 (in Russian). 21. N.P. Dikij, P.P. Matyash, P.A. Svetashov, N.A. Skakun. Lattice location of phosphor atoms in silicon implanted // Phys. Stat. Sol. 1975, v. (a)32, p. K165-K167. 22. N.A. Skakun, N.P. Dikij, P.P Matyash. Depth distribution of silicon radiation damages by lithium ion implantation // Fizika Tverdogo Tela. 1975, v. 17, p. 927-929 (in Russian). 23. N.P. Dikij, P.P. Matyash, N.A. Skakun. The profiles of boron implanted in silicon and resulted radiation damages // Fizika i Tehnika Poluprovod- nicov. 1975, v. 9, №3, p. 592-594 (in Russian). 24. A.S. Deev, P.A. Svetashov, N.A. Skakun. Study of lattice positions and ranges of nitrogen, implanted into metals and IIIAVB crystals // Radia- tion Effects in Solid. 1990, v. 114, p. 199-207. 25. A.S. Deev at al. Lattice site location of C, N and O atoms implanted into semiconductor crystals type IIIAVB // Fizika Tverdogo Tela. 1991, v. 33, №7, p. 2208-2210 (in Russian). 26. I.G. Stojanova, N.A. Skakun, P.A. Sve- tashov. Influence of intensity and dose of Mg ions implanted on radiation damages in InSb // Poverkhnost: fizika, khimija, mekhanika. 1988, №3, p. 129-134 (in Russian). 27. A.C. Trokhin, I.G. Stojanova, N.A. Skakun Lattice site location of beryllium atoms in InSb // Poverkhnost: fizika, khimija, mekhanika. 1988, №3, p. 144-146 (in Russian). 28. N.A. Skakun, I.G. Stojanova at al. Use of the reaction 9Be(α,nγ)12С for determination atoms profile and localization of beryllium atoms im- planted into InSb // Materialy XVI Vsesoyusnogo soveshaniya po fizike vzaimodejstviy zaryazhen- nekh chastiz s kristallami. Moscow: “MGU”, 1986, p. 172-174 (in Russian). 29. A.Y. Grinchenko, V.A. Oleinik at al. Lattice site location of titan atoms in corund // Fizika Tverdogo Tela. 1992, v. 34, №1, p. 249-253 (in Russian). 30. A.Yu. Grinchenko, V.A. Oleinik at al. Study of radiation damages in ion irradiated ironyttrium garnets // Trudy Mezdunarodnoi konferencyi po ra- diazionnomu materialovedeniju. Kharkov: “KPTI” 1991, v. 10, р. 194 (in Russian). 31. N.A. Skakun, A.Yu. Grinchenko, V.A. Oleinik at al. Use of nuclear reactions 18O(p,α)15N and 16O(3He,4He)15O for study of the HTSC crystals // Tezisy dokladov XX Vsesoyusno- go soveshaniya po fizike vzaimodejstviy zaryazhen- nekh chastiz s kristallami. Moscow: “MGU”, 1990, р. 170 (in Russian). 32. V.M. Azhazha, N.A. Skakun at al. Study of oxygen diffusion in YBa2Cu3O7-x by means of 18O(p,α)15N reaction // Sverphprovod.: Fiz. Khim. Tekh. 1990, v. 3, p. 913-916 (in Russian). 33. N.A. Skakun, A.Yu. Grinchenko, V.A. Oleinik at al. Channeling study of high-Tc su- perconducting single crystal sublattices // Nuclear Instruments and Methods B. 1992, v. 67, p. 202- 206. APPLICATION OF NUCLEAR PHYSICS METHODS AND NSC KIPT ACCELERATORS FOR INVESTIGATION OF SOLID COMPOSITION N.A. Skakun, P.A. Svetashov National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine REFERENCES