2025-02-23T11:41:00-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: Query fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-110897%22&qt=morelikethis&rows=5
2025-02-23T11:41:00-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: => GET http://localhost:8983/solr/biblio/select?fl=%2A&wt=json&json.nl=arrarr&q=id%3A%22irk-123456789-110897%22&qt=morelikethis&rows=5
2025-02-23T11:41:00-05:00 DEBUG: VuFindSearch\Backend\Solr\Connector: <= 200 OK
2025-02-23T11:41:00-05:00 DEBUG: Deserialized SOLR response

Group properties of osp(2/1;C) gauge transformations

Given an explicit construction of the grade star hermitian adjoint representation of osp(2/1;C) graded Lie algebra, we consider the Baker-Campbell-Hausdorff formula and find reality conditions for the Grassmann-odd trans-formation parameters that multiply the pair of odd generators of the graded Lie...

Full description

Saved in:
Bibliographic Details
Main Author: Ilyenko, K.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Series:Вопросы атомной науки и техники
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/110897
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given an explicit construction of the grade star hermitian adjoint representation of osp(2/1;C) graded Lie algebra, we consider the Baker-Campbell-Hausdorff formula and find reality conditions for the Grassmann-odd trans-formation parameters that multiply the pair of odd generators of the graded Lie algebra. Utilization of su(2)-spinors clarifies the nature of Grassmann-odd transformation parameters and allows one an investigation of the corresponding infinitesimal gauge transformations. We also explore the action of a corresponding group element on an appropriately graded representation space and find that a proper (graded) generalization of hermitian conjugation is consistent with a natural generalization of Dirac adjoint. A corresponding generalization of a unitary transformation is discussed.