Single–spin asymmetries in electron–proton and photon-proton scattering in the Bethe–Heitler processes induced by loop corrections

The single–spin target asymmetries in the hard electroproduction process e⁻ + p → e⁻ + γ + p and in the e⁺e⁻-pair photoproduction γ + p → e⁺ + e⁻ + p, induced by the loop radiative corrections to the vertex part of lepton interaction are considered. The physical reason to appearance such a kind of a...

Full description

Saved in:
Bibliographic Details
Date:2007
Main Authors: Afanasev, A.V., Konchatnij, M.I., Merenkov, N.P.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Series:Вопросы атомной науки и техники
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/110943
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Single–spin asymmetries in electron–proton and photon-proton scattering in the Bethe–Heitler processes induced by loop corrections/ A.V. Afanasev, M.I. Konchatnij, and N.P. Merenkov // Вопросы атомной науки и техники. — 2007. — № 3. — С. 93-97. — Бібліогр.: 5 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-110943
record_format dspace
spelling irk-123456789-1109432017-01-08T03:02:34Z Single–spin asymmetries in electron–proton and photon-proton scattering in the Bethe–Heitler processes induced by loop corrections Afanasev, A.V. Konchatnij, M.I. Merenkov, N.P. Elementary particle theory The single–spin target asymmetries in the hard electroproduction process e⁻ + p → e⁻ + γ + p and in the e⁺e⁻-pair photoproduction γ + p → e⁺ + e⁻ + p, induced by the loop radiative corrections to the vertex part of lepton interaction are considered. The physical reason to appearance such a kind of asymmetries is the nonzero imaginary part of the respective Bethe-Heitler amplitudes (on the level of radiative correction). The single–spin target asym-metries at unpolarized ingoing electron or photon beams and at arbitrary polarizations of the target proton for condi-tions of CLAS (Jefferson Lab, USA) and HERMES (DESY) experiments are calculated. Досліджені односпінові асиметрії мішені в процесах “жорсткого” електронародження e⁻ + p → e⁻ + γ + p і в фотонародженні e⁺e⁻--пар γ + p → e⁺ + e⁻ + p, індуковані петлевими радіаційними поправками в лептон-ній частині взаємодії. Фізичною причиною, що обумовлює такого виду асиметрії, є ненульова уявна частина Бете-Гайтлерівської амплітуди, яка з’являється на рівні радіаційної поправки. Односпінові асиметрії мішені у випадку неполяризованого електронного (чи фотонного) пучків та довільної поляризації протона-мішені обчислені в кінематичних умовах експериментів по електронародженню CLAS (Jefferson Lab, USA) і HERMES (DESY). Исследованы односпиновые асимметрии мишени в процессах “жесткого” электророждения e⁻ + p → e⁻ + γ + p и в фоторождении e⁺e⁻--пар γ + p → e⁺ + e⁻ + p, индуцированные петлевыми радиационными поправками в лептонной части взаимодействия. Физической причиной, обуславливающей такого вида асимметрии, является ненулевая мнимая часть Бете-Гайтлеровской амплитуды, которая появляется на уровне радиационной поправки. Односпиновые асимметрии мишени в случае неполяризованного электронного (или фотонного) пучка и произвольной поляризации протона-мишени вычислены в кинематических условиях экспериментов по электророждению CLAS (Jefferson Lab, USA) и HERMES (DESY). 2007 Article Single–spin asymmetries in electron–proton and photon-proton scattering in the Bethe–Heitler processes induced by loop corrections/ A.V. Afanasev, M.I. Konchatnij, and N.P. Merenkov // Вопросы атомной науки и техники. — 2007. — № 3. — С. 93-97. — Бібліогр.: 5 назв. — рос. 1562-6016 PACS: 12.20.-m, 13.60.-r http://dspace.nbuv.gov.ua/handle/123456789/110943 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Elementary particle theory
Elementary particle theory
spellingShingle Elementary particle theory
Elementary particle theory
Afanasev, A.V.
Konchatnij, M.I.
Merenkov, N.P.
Single–spin asymmetries in electron–proton and photon-proton scattering in the Bethe–Heitler processes induced by loop corrections
Вопросы атомной науки и техники
description The single–spin target asymmetries in the hard electroproduction process e⁻ + p → e⁻ + γ + p and in the e⁺e⁻-pair photoproduction γ + p → e⁺ + e⁻ + p, induced by the loop radiative corrections to the vertex part of lepton interaction are considered. The physical reason to appearance such a kind of asymmetries is the nonzero imaginary part of the respective Bethe-Heitler amplitudes (on the level of radiative correction). The single–spin target asym-metries at unpolarized ingoing electron or photon beams and at arbitrary polarizations of the target proton for condi-tions of CLAS (Jefferson Lab, USA) and HERMES (DESY) experiments are calculated.
format Article
author Afanasev, A.V.
Konchatnij, M.I.
Merenkov, N.P.
author_facet Afanasev, A.V.
Konchatnij, M.I.
Merenkov, N.P.
author_sort Afanasev, A.V.
title Single–spin asymmetries in electron–proton and photon-proton scattering in the Bethe–Heitler processes induced by loop corrections
title_short Single–spin asymmetries in electron–proton and photon-proton scattering in the Bethe–Heitler processes induced by loop corrections
title_full Single–spin asymmetries in electron–proton and photon-proton scattering in the Bethe–Heitler processes induced by loop corrections
title_fullStr Single–spin asymmetries in electron–proton and photon-proton scattering in the Bethe–Heitler processes induced by loop corrections
title_full_unstemmed Single–spin asymmetries in electron–proton and photon-proton scattering in the Bethe–Heitler processes induced by loop corrections
title_sort single–spin asymmetries in electron–proton and photon-proton scattering in the bethe–heitler processes induced by loop corrections
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2007
topic_facet Elementary particle theory
url http://dspace.nbuv.gov.ua/handle/123456789/110943
citation_txt Single–spin asymmetries in electron–proton and photon-proton scattering in the Bethe–Heitler processes induced by loop corrections/ A.V. Afanasev, M.I. Konchatnij, and N.P. Merenkov // Вопросы атомной науки и техники. — 2007. — № 3. — С. 93-97. — Бібліогр.: 5 назв. — рос.
series Вопросы атомной науки и техники
work_keys_str_mv AT afanasevav singlespinasymmetriesinelectronprotonandphotonprotonscatteringinthebetheheitlerprocessesinducedbyloopcorrections
AT konchatnijmi singlespinasymmetriesinelectronprotonandphotonprotonscatteringinthebetheheitlerprocessesinducedbyloopcorrections
AT merenkovnp singlespinasymmetriesinelectronprotonandphotonprotonscatteringinthebetheheitlerprocessesinducedbyloopcorrections
first_indexed 2025-07-08T01:23:02Z
last_indexed 2025-07-08T01:23:02Z
_version_ 1837039912688287744
fulltext Section B. ELEMENTARY PARTICLE THEORY SINGLE–SPIN ASYMMETRIES IN ELECTRON–PROTON AND PHOTON-PROTON SCATTERING IN THE BETHE–HEITLER PROCESSES INDUCED BY LOOP CORRECTIONS A.V. Afanasev1, M.I. Konchatnij2, and N.P. Merenkov2 1Jefferson Lab, Newport News, VA 23606, USA; e-mail: afanas@jlab.org; 2National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; e-mail: konchatnij@kipt.kharkov.ua; merenkov@kipt.kharkov.ua The single–spin target asymmetries in the hard electroproduction process and in the e e - pair photoproduction , induced by the loop radiative corrections to the vertex part of lepton interaction are considered. The physical reason to appearance such a kind of asymmetries is the nonzero imaginary part of the respective Bethe-Heitler amplitudes (on the level of radiative correction). The single–spin target asym- metries at unpolarized ingoing electron or photon beams and at arbitrary polarizations of the target proton for condi- tions of CLAS (Jefferson Lab, USA) and HERMES (DESY) experiments are calculated. e p e γ− −+ → + + p p 2 . + − p e eγ + −+ → + + PACS: 12.20.-m, 13.60.-r 1. INTRODUCTION The parity–conserving single–spin beam and target correlations in elastic electron–proton scattering and radiative reaction are used to extract information about virtual Compton scattering (VCS) amplitude. This last is very important physical quantity which has triggered a significant experimental and theoretical activity. In elastic scattering the VCS amplitude enters through the two–photon exchange diagram (TPE) with two off-shell photons. The cross section and parity- conserved spin–spin correlations in this case are sensi- tive only to the real part of this diagram and, therefore, to the real part of the double off-shell VCS amplitude. Contrary, the single–spin normal asymmetry probes only the imaginary part of TPE amplitude for both beam and target normal polarizations. If the electron beam or the target proton is polarized in the reaction plane, the parity–conserving single–spin asymmetry for elastic scattering is strictly zero. Never- theless, the nonzero such kind asymmetry can manifest itself in the process with three (and more) final particles provided that all the final–particle 3–momenta do not belong to single (the same) plane. The simplest such type process that probes VCS amplitude is the hard electroproduction ( reaction )ee γ′ 1 1 2( ) ( ) ( ) ( ) ( )e k p p e k k p pγ− −+ → + + (1) The whole amplitude of this process can be repre- sented as a sum of they real Bethe–Heitler amplitude and VCS one, that has both the real and imaginary parts. In present paper we want to pay attention that the one–loop correction to the lepton part of the Bethe– Heitler amplitude with radiation of a photon by the out- going electron can generate the non–zero imaginary part, and, consequently, an additional contribution to the single-spin asymmetries, which has the status of radiative correction to main effect caused by imaginary part of VCS amplitude. 2. KINEMATICAL VARIABLES To describe the physical observables in the process (1) usually used three dimensionless variables 2 1 2 1 1 2 1 1 2 ( ) 2 ( 2 ( ) k k p k k x y p k k V − − = − , = , − ) 2 1 2 1 1 ( ) 2 p p V p k V ρ − = − , = , (2) and azimuth angle in the target proton rest frame that is simply the angle between leptonic and hadronic planes as shown in Fig. 1 for two different choices of -axis: opposite to direction (Fig. 1,a) and along direction of (Fig. 1,b). Φ k Z 1 1= −q k k 2 1 Fig. 1. Definition of angles in laboratory frame The energies and the 3–momentum modules of the particles do not depend on the choice of Z–axis and neglecting the electron mass read 1 2 10(1 )y q yε β ε β β= , = − , = , 2 2(2 ) (4 )E β τ ρ β ρ τ ρ= + , | |= +p , (3) 2 2 1 4 4 V My xy V β τ β τ τ | |= + , = , =q , PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2007, N3 (1), p. 93-97. 93 where is the energy of ingoing (outgoing) elec- tron, is the energy (3–momentum) of the recoil proton. 1 2( )ε ε 2 2( )E p In contrast with the energies, the scattering angles depend on the choice of Z–axis direction. For the sys- tem (Fig.1,a) one has K 2 (1 2 )cos (1 ) 4 e y y x y y xy τθ τ − − = − , − + 2 2 ( )cos (4 )( 4 ) p y xy y xy ρ τ ρθ ρ τ ρ τ + + = − , + + (4) whereas in the case of system (Fig.1,b): K̂ 1 2 2ˆ ˆcos cos 1 (4 )e p y xy z y τ ρθ θ ρ τ ρ − − + = , = − + τ , 1 22 1 k p z V = − , (5) )iB + = where is the electron and proton scattering an- gles in system , is the same but in system and we introduced for a convenience new dimensionless quantity that has to be expressed through azimuth angle and invariant variables Eq. (2) in the final results. ( )e pθ θ z K ˆ ˆ(e pθ θ ) K̂ In what follows we will present the analytical for- mulae only for -system. Usually the photon is not recorded experimentally and therefore we have to ex- clude the photon 4–momentum from the phase space of final particles by means of the overall –function. Thus, we have to define K (4)δ 3 3 22 2 2 2 ( ) d k d p dF k E δ ε = . (6) T u Elimination of is trivial in system 2( )kδ K 2 1 2 1( ) cos 2pk dδ θ = , | || |q p that leads to 22 4 V ydF dxdyd d y xy π ρ τ = + Φ. (7) The invariant variable can be expressed through and c namely (see also Ref. [1]) z x y ρ, , osΦ, 1 4 z y xτ = + 2 cosK× Φ[ ]2 ( ) (1 2 ) ;x xy xy xy xτ ρ ρ+ + + + + − (8) ( )( )( )( )2 1x y xy y xy K y τ τ ρ ρ ρ+− − − + − − = . ρ− Quantities in the last expression have a sense of the minimum and maximum value of at fixed and ρ± ρ x y ( )( )21 4 2[ (1 ) ] y x y y xy x y x ρ τ τ±  = − ± +  − + (9) 2+ .τ (1) 1 2 [ ] [ ] 4 ( ( )( M F F H B V z z xyµν µν π ρ ρ + = − − − ) ) 3. THE SINGLE–SPIN TARGET ASYMMETRY IN ELECTROPRODUCTION In this paper we will concentrate on the single–spin target asymmetries. They can be written in terms of contraction of leptonic and hadronic tensors. For the hard electroproduction process (1) we have [2] (1) [ ] [ ] ( ) ( )4t H B A H B µν µν µν µν α π = − , (10) where and are the symmetrical and anti- symmetrical parts of hadronic tensor. They can be ex- pressed through the proton electromagnetic form factors (see Ref. [2]). Tensor is the leptonic tensor in the Born approximation and ] is antisymmetrical imagi- nary part of leptonic tensor that generated by the loop radiative correction. Here we bear in mind that the lep- ton beam is unpolarized and the target proton has an arbitrary polarization. We use the result of Ref. [3] and write one–loop corrected unpolarized leptonic tensor in the form ( )H µν [ ]H µν B( )µν (1 [B ) µν (1 (1) [ ] ( ) 11 11 1 1( ) ( )g gB T T T Tg k kµν µν µ νµν ∗ ∗+ + + 22 22 12 212 2 1 2 21 12 2 1 ( ) ( ) ( ) . T T T Tk k k k T T k k µ ν µ ν µ ν ∗ ∗ ∗ + + + + + + It is easy to divide the right-hand side of above equation by its symmetrical and antisymmetrical pieces and we arrive at (1) [ ] 12 21 1 2( )[ ]B T T k kµν µν= ℑ − . (11) Quantities and T are found in Ref. [3], and the extraction of the respective imaginary part leads to re- sult 12T 21 ( )(1) [ ] 1 2 1 22 ;B Tk k k kµν µ ν ν µπ= − 2 2 2 1 14 lnq st u t st t u cc  += + −    (12)  , t where we used the same variables as in Ref. [3] 2 1 2 2 12 2 2u k k s kk t kk q s t u c u= − , = , = − , = + + , = + . Note that quantity T does not have singularity at t and goes to zero when q 0→ 2 0→ . The denominator in Eq. (10) in terms of invariant variables reads ( ) ( )H Bµν µν 2 2 2 1 1 2 2 1 2( ) 2 ( ) ( )( ) 4 V F F F F z z xy ρχ χ ρ τ  = − + + + − −   ; ) , , (13) 2 1 2 ( ) ( ) ;z z xy xyχ ρ ρ ρ = − − − + +  ( )[ ]2 2 (1z xy z yχ ρ τ ρ= − − + − ( )2 21 (1 )xy z yτ ρ ρ  + + − − + −  where we used also and is the Dirac (Pauli) proton form factor. ( ) ( )s V z t V z xyρ= − , = − − 1 2( )F F The numerator in Eq. (10) is expressed via the tar- get–proton polarization 4-vector S 2 21 s xy xy xy z G z z xy xyz ρ ρ − × − + + + −  ln ; (14) 1 2 1 2 1 2 1 2 2 ( )( ) 2( ) , 4s k k qp p S G k k qS F F F V ρ τ τ  = − +    94 where δ . ( )abcd a b c dα β γ αβγδε= In general the one-loop correction to the leptonic part of interaction generates the three types of target single-spin asymmetries when the target proton has three different directions of its polarization 3-vector in laboratory system. If the longitudinal (L) target proton polarization in laboratory system is chosen along direction of the transverse (T) polarization belongs to plane and the normal (N) one – along direction the respective polarization 4-vectors can be ex- pressed through the particles 4-momenta as Ref. [4]. 1,k 1( ,k k 2×k 2 1 , ) k )( 1 L T NS , , Fig. 2. The target single-spin asymmetries that are suit- able for choice (16) of the target-proton polarizations as a function of angle Φ 1 1 1 2 1 1 1 3 2 2( ) (1 ) L Nk p k k p S S V V xy y xy µ µ µ µ τ µ τ τ − = , = − − − , (15) 2 1 1 (1 2 ) (1 ) T k y xy k xyp S Vxy y xy µ µ µ τ τ − − − − = , − − 1µ . where and For this choice of the target polarization we have 1 1( )I J IJS S δ= − 1 1( ) 0;IS p I J L T N= , = , , (1 2 1 1 1 ( ) 2L s k k qp G F Vτ = − + ,)2zF (16) G L 1 2 1 1 ( ) (1 ) T s k k qp G Vxy y xyτ = × − − 2 12 ( (1 2 2 F xyF xy yz xρ τ  − + + − +   )) ;τ (17) 3 1 1 1 2 (1 ) 4 N s V xyG F y xy ρ τ τ  = − × − − −   2F [ ] 2 2 1 2 1 4 4 ( ) (2 ) (1 ) F k k qp z y xy V xy ρ ρ τ  × − − − − −   , (18) where the proton form factors depend on The target single-spin asymmetries corresponding to above choice of polarizations are shown on Fig. 2. 2 2q Q Vρ= − = − . In principle, one can choose other directions to de- fine polarizations of the target proton. The case when the longitudinal direction is along the 3-momentum of the recoil proton and the transverse one – in the plane were considered in [2]. 1 2( ,Ρk ) 2 2 + 4. SINGLE-SPIN TARGET ASYMMETRIES IN PAIR PRODUCTION The amplitudes of the BH-processes (1) and the electron-positron pair production 1 1 2( ) ( ) ( ) ( ) ( )k p p e k e k p pγ + −+ → + + (19) are connected each others by well known substitution law [5]. By means of this substitution law one can calculate both, the symmetrical and antisymmetrical parts of lep- tonic tensor in process (19), using the known re- sults for leptonic tensor in process Eq. (1), namely Lγµν 1 1 2( )L L k k k k k kγ µν µν= − → − , → − , → . (20) In one-loop approximation we have (1) (1) [ ] ( ) 11 11 1 1( ) ( )g giB B T T T Tg k k γ γ γ γ γ γ µν µν µ νµν ∗ ∗+ = + + + 22 22 12 212 2 1 2 21 12 2 1 ( ) ( ) ( ) ; T T T Tk k k k T T k k γ γ γ γ µ ν µ ν γ γ µ ν ∗ ∗ ∗ + + + + + + (1) [ ] 12 21 1 2( )[ ]B T T k kγ γ γ µν µν= ℑ − , and the interesting for us term T has the following form 12 γ 2 2 2 12 2 2 2 ( ) ( )aq s u G q sq ut GT ut u t γ γ γ  − − = +  2 2 2 22 8qs sq s u t usq L s t ut c a  − + − + + + − +    3 u 2 2 2 2 2 2 4( )( ) (2 )( )qs qu s au q L c q a t ut sq L c a t − − + − − + 2 (2 ) ;qt q a s u L bu − −   (21) 2 ( 2 ) 3qs q s tL L Lγ π = + − − 2 2 2 22 (1 ) 2 (1 )q tLi Li s q − − + − , 95 ( )G G t uγ γ= → , 2 0 ( ) (1 ) x dyLi x ln y y = − −∫ , where and also 2 1 2 1 2( ) 2 2s k k t kk u kk= + , = − , = − , , .a s t b s u c u t= + = + = + , The quantities in Eq. (21) are defined in the follow- ing way ikL 2, , , , ,ik i kL L L i k s t u q= − = , 2lni iL m − = . Quantity can be obtained from T by change . 21T γ 12 γ t u↔ The extraction of imaginary part leads to 12 21 2 2 ( ) 8 ln ln ( ) T T q s u t s u t q u t ut t t u u u t γ γ π ℑ − =  + + − = − + +  2 ( ) . (22) It is convenient also to introduce the appropriate for the process (19) dimensionless variables 2 2 2 1 2 1 1 2 ( ) 2 ( ) ( ) 2 ( ) k k p k k p p x y p k k V V ρ − − = − , = , = − , − 2− (23) 2 1 2 1 2 kp z V V  = − , =    p k. In terms of these variables we have (1) 1 2 [ ] [ ] 8 ( ( ) M F FH B Vxy z xy γ µν µν πρ + = − ) 2 ( 2 )ln ln ;s z z z z z xy G xy xy z xy z xy z γρ ρ ρ − − − × − − − −  ( ) ( ) ( ) VH B xy z xy γ µν µν = − × − 2 2 1 1 2 2 1 2( ) 2 ( 4 F F F Fγ γ ρχ χ τ  + + +   2 ) , ) ; ) . where 2 2 1 ( ) (z xy xyχ ρ ρ ρ = − − − + −  1 2 3 4 5 6 -0.03 -0.02 -0.01 0.01 0.02 0.03 1 2 3 4 -0.006 -0.004 -0.002 0.002 0.004 0.006 1 2 3 4 5 6 0.002 0.004 0.006 0.008 8 2.9 3.1 3.2 3.3 3.4 3.5 0.005 0.01 0.015 0.02 2 2 2 ( ) (z xy xyχ τ ρ ρ = − − + −  21 (1 ) (1 )( )y xy z z xyρ ρ ρ − + − + − − − − −  The function , that depends on the target polari- zations, has the same form in terms of variables of Eq. (23) as function in Eq. (14) in terms of variables Eq. (2). sGγ sG The single–spin target asymmetry in the photopro- duction process (19) is (1) [ ] [ ] ( ) ( )4t H B A H B γ µν µνγ γ µν µν α π = − . (24) In our numerical evaluations we use the parameteriza- tion Eq. (15) of the target proton polarizations in which changed by . The results are shown on Fig. 3 for CLAS1 experimental condition. 1k k 5. CONCLUSIONS In present paper we studied the single-spin parity conserving target asymmetries in the Bethe-Heitler processes of hard electroproduction (1) and electron- positron pair photoproduction (19). Effect arises due to appearance of non zero imaginary part of the amplitudes on the level of radiative corrections. During the calcula- tions we used the substitution law to obtain the one-loop corrected leptonic tensor in process (19) using corre- sponding and known tensor for the process (1). The numerical estimations in conditions of current experi- ments CLAS (JLab) and HERMES (DESY) indicate very small values of any kind asymmetry in process (1). Fig. 3. The -dependence of target asymmetries in photoproduction for clas1 conditions. From top: angle Φ is given in radians Φ ,Tγ,LAγ A ;NAγ In fact, in this reaction there is additional suppres- sion due to used kinematical restrictions: small values of invariants and .This suppression leads to asym- metries which do not exceed 10 . At the same kine- matics the asymmetries in process (19) can reach for about two order more values. Such situation, in princi- t 2q 4− 96 ple, gives the possibility to use process of pair photo- production to determine the polarization states of the proton and even for independent measurement of the proton electromagnetic form factors. REFERENCES 1. A.V. Belitsky, D. Müller, A. Kirchner. Theory of deeply virtual Compton scattering on the nucleon // Nucl. Phys. B. 2002, v. 629, p. 323-392. 2. A.V. Afanasev, M.I. Konchatnij, N.P. Merenkov. Single-spin asymmetries in the Bethe-Heitler proc- ess induced by loop correc- tions //J. Exp. Theor. Phys. 2006, v. 102, p. 220- 233. e p e γ− −+ → + + 3. E.A. Kuraev, N.P. Merenkov, V. S. Fadin. The Compton tensor with heavy photon //Yad. Fiz. 1987, v. 45, p. 782-789. 4. A.V. Afanasev, I. Akushevich, N.P. Merenkov. QED correction to asymmetry for polarized scattering from the method of the electron structure functions //J. Exp. Theor. Phys. 2004, v. 98, p. 403-416. ep p p p p p 5. J.M. Jauch, F. Rohrlich. The Theory of Photons and Eelectrons. New York, Heidelberg, Berlin: “Springer-Verlag”, 1976, 553 р. ОДНОСПИНОВЫЕ АСИММЕТРИИ В ЭЛЕКТРОН-ПРОТОННОМ И ФОТОН-ПРОТОННОМ РАССЕИВАНИИ В ПРОЦЕССАХ БЕТЕ-ГАЙТЛЕРА, ИНДУЦИРОВАННЫЕ ПЕТЛЕВЫМИ ПОПРАВКАМИ А.В. Афанасьев, М.И. Кончатный, Н.П. Меренков Исследованы односпиновые асимметрии мишени в процессах “жесткого” электророждения и в фоторождении -пар , индуцированные петлевыми радиаци- онными поправками в лептонной части взаимодействия. Физической причиной, обуславливающей такого вида асимметрии, является ненулевая мнимая часть Бете-Гайтлеровской амплитуды, которая появляется на уровне радиационной поправки. Односпиновые асимметрии мишени в случае неполяризованного электрон- ного (или фотонного) пучка и произвольной поляризации протона-мишени вычислены в кинематических условиях экспериментов по электророждению CLAS (Jefferson Lab, USA) и HERMES (DESY). e p e γ− −+ → + + e e+ − p e eγ + −+ → + + ОДНОСПІНОВІ АСИМЕТРІЇ В EЛЕКТРОН-ПРОТОННОМУ І ФОТОН-ПРОТОННОМУ РОЗСІЮВАННІ В ПРОЦЕСАХ БЕТЕ-ГАЙТЛЕРА, ІНДУКОВАНІ ПЕТЛЕВИМИ ПОПРАВКАМИ А.В. Афанас’єв, М.І. Кончатний, М.П. Меренков Досліджені односпінові асиметрії мішені в процесах “жорсткого” електронародження і в фотонародженні -пар , індуковані петлевими радіаційними поправками в лептон- ній частині взаємодії. Фізичною причиною, що обумовлює такого виду асиметрії, є ненульова уявна частина Бете-Гайтлерівської амплітуди, яка з’являється на рівні радіаційної поправки. Односпінові асиметрії мішені у випадку неполяризованого електронного (чи фотонного) пучків та довільної поляризації протона-мішені обчислені в кінематичних умовах експериментів по електронародженню CLAS (Jefferson Lab, USA) і HERMES (DESY). e p e γ− −+ → + + e e+ − p e eγ + −+ → + + 97