Spectral properties of the two-dimensional multiwell potential

Two-dimensional multiwell Hamiltonian system with four local minima is considered. The motion of the system shifts from regular to chaotic through “mixed state”, i.e. the state, when regular and irregular regimes of motion coexist in different local minima. Three regimes of motion – regular ( R),...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Chekanov, N.A., Shevchenko, E.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Назва видання:Вопросы атомной науки и техники
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/110965
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Spectral properties of the two-dimensional multiwell potential / N.A. Chekanov, E.V. Shevchenko // Вопросы атомной науки и техники. — 2007. — № 3. — С. 270-264. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Two-dimensional multiwell Hamiltonian system with four local minima is considered. The motion of the system shifts from regular to chaotic through “mixed state”, i.e. the state, when regular and irregular regimes of motion coexist in different local minima. Three regimes of motion – regular ( R), mixed state (RC), and chaotic (C) – are considered. For each energy region the spectrum is calculated by direct diagonalization in polar coordinates, the eigenstates are classified according to the irreducible representations of C3v -point group, and the spectral statistical properties are analyzed and compared to the theoretical predictions for integrable, chaotic and generic (neither regular nor chaotic) systems.