Intermittency in Hamiltonian systems

We consider 2D map with the singularity. Here we observe an intermittency behavior. This system can be interpreted in two ways. In the first way this map can arise like a result of quantization of the continuous Hamiltonian system with one degree of freedom. In the second way we can interpret this m...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2007
Автори: Slipushenko, S.V., Tur, A.V., Yanovsky, V.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2007
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/110970
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Intermittency in Hamiltonian systems / S.V. Slipushenko, A.V. Tur, V.V. Yanovsky // Вопросы атомной науки и техники. — 2007. — № 3. — С. 289-292. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:We consider 2D map with the singularity. Here we observe an intermittency behavior. This system can be interpreted in two ways. In the first way this map can arise like a result of quantization of the continuous Hamiltonian system with one degree of freedom. In the second way we can interpret this map like a Poincaré section of some 2D Hamiltonian system. As is well known the behavior of a Poincaré section defines the system behavior as a whole. We investigate the mechanism of the chaos generation near singularity. We show that singularity can generate a stochastic sea in Hamiltonian systems under any value of a perturbation. Originating modes have intermittent structure.