Plasma of electric arc discharge between copper electrodes in a gas flow

Spectroscopy investigations of the thermal multicomponent plasma of the electric arc discharge between copper electrodes in carbon dioxide and argon flows were carried out. The technique of calculation of plasma equilibrium com­p­o­sition is discussed. The influence of hydrodynamic cooling of gas fl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2008
Hauptverfasser: Babich, I.L., Boretskij, V.F., Veklich, A.N.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2008
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/110978
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Plasma of electric arc discharge between copper electrodes in a gas flow / I.L. Babich, V.F. Boretskij, A.N. Veklich // Вопросы атомной науки и техники. — 2008. — № 6. — С. 171-173. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-110978
record_format dspace
spelling irk-123456789-1109782017-01-08T03:03:15Z Plasma of electric arc discharge between copper electrodes in a gas flow Babich, I.L. Boretskij, V.F. Veklich, A.N. Low temperature plasma and plasma technologies Spectroscopy investigations of the thermal multicomponent plasma of the electric arc discharge between copper electrodes in carbon dioxide and argon flows were carried out. The technique of calculation of plasma equilibrium com­p­o­sition is discussed. The influence of hydrodynamic cooling of gas flow on the plasma state is estimated. It was assumed that the thermal dissociation of molecules of working gas play the key role in deviation from local thermodynamic equilibrium (LTE) in plasma. Спектроскопічними методами досліджено термічну багатокомпонентну плазму електродугового розряду між мідними електродами у потоках аргону та вуглекислого газу. Обговорюється методика розрахунку рівноважного складу плазми. Оцінений вплив гідродинамічного охолодження потоком газу на стан плазми. Припускається, що термічна дисоціація молекул робочого газу є основним механізмом відхилення від локальної термодинамічної рівноваги в плазмі. Спектроскопическими методами исследована термическая многокомпонентная плазма электродугового разряда между медными электродами в потоках аргона и углекислого газа. Обсуждается методика расчета равновесно­го состава плазмы. Оценено влияние гидродинамического охлаждения потоком газа на состояние плазмы. Предполагается, что термическая диссоциация молекул рабочего газа является основным механизмом отклонения от локального термодинамического равновесия в плазме. 2008 Article Plasma of electric arc discharge between copper electrodes in a gas flow / I.L. Babich, V.F. Boretskij, A.N. Veklich // Вопросы атомной науки и техники. — 2008. — № 6. — С. 171-173. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 51.30.+i, 52.70.-m http://dspace.nbuv.gov.ua/handle/123456789/110978 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Low temperature plasma and plasma technologies
Low temperature plasma and plasma technologies
spellingShingle Low temperature plasma and plasma technologies
Low temperature plasma and plasma technologies
Babich, I.L.
Boretskij, V.F.
Veklich, A.N.
Plasma of electric arc discharge between copper electrodes in a gas flow
Вопросы атомной науки и техники
description Spectroscopy investigations of the thermal multicomponent plasma of the electric arc discharge between copper electrodes in carbon dioxide and argon flows were carried out. The technique of calculation of plasma equilibrium com­p­o­sition is discussed. The influence of hydrodynamic cooling of gas flow on the plasma state is estimated. It was assumed that the thermal dissociation of molecules of working gas play the key role in deviation from local thermodynamic equilibrium (LTE) in plasma.
format Article
author Babich, I.L.
Boretskij, V.F.
Veklich, A.N.
author_facet Babich, I.L.
Boretskij, V.F.
Veklich, A.N.
author_sort Babich, I.L.
title Plasma of electric arc discharge between copper electrodes in a gas flow
title_short Plasma of electric arc discharge between copper electrodes in a gas flow
title_full Plasma of electric arc discharge between copper electrodes in a gas flow
title_fullStr Plasma of electric arc discharge between copper electrodes in a gas flow
title_full_unstemmed Plasma of electric arc discharge between copper electrodes in a gas flow
title_sort plasma of electric arc discharge between copper electrodes in a gas flow
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2008
topic_facet Low temperature plasma and plasma technologies
url http://dspace.nbuv.gov.ua/handle/123456789/110978
citation_txt Plasma of electric arc discharge between copper electrodes in a gas flow / I.L. Babich, V.F. Boretskij, A.N. Veklich // Вопросы атомной науки и техники. — 2008. — № 6. — С. 171-173. — Бібліогр.: 4 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT babichil plasmaofelectricarcdischargebetweencopperelectrodesinagasflow
AT boretskijvf plasmaofelectricarcdischargebetweencopperelectrodesinagasflow
AT veklichan plasmaofelectricarcdischargebetweencopperelectrodesinagasflow
first_indexed 2025-07-08T01:27:25Z
last_indexed 2025-07-08T01:27:25Z
_version_ 1837040191434391552
fulltext PLASMA OF ELECTRIC ARC DISCHARGE BETWEEN COPPER ELECTRODES IN A GAS FLOW I.L. Babich, V.F. Boretskij, A.N. Veklich Taras Schevchenko National University of Kyiv, Radio Physics Faculty, 64, Volodymyrs'ka Str., 01033 Kiev, Ukraine, e-mail: boretskij@univ.kiev.ua Spectroscopy investigations of the thermal multicomponent plasma of the electric arc discharge between copper electrodes in carbon dioxide and argon flows were carried out. The technique of calculation of plasma equilibrium com- position is discussed. The influence of hydrodynamic cooling of gas flow on the plasma state is estimated. It was assumed that the thermal dissociation of molecules of working gas play the key role in deviation from local thermodynamic equilibrium (LTE) in plasma. PACS: 51.30.+i, 52.70.-m 1. INTRODUCTION As well known, a gas shielded arc is often used in electric arc technology. A welding or arc cutting processes is usually realized in argon, carbon dioxide, nitrogen, oxygen and air or mixtures of different gases. From one hand the spatial distribution of plasma parameters are depended from flow rate or kind of surround gas. And from another hand the metal vapour content in arc discharge significantly determine these parameters too. Therefore the investigations of electric arc plasma with metal vapour in different shielding gases are interesting from the viewpoint of industrial applications and studying of basic physical phenomena as well. 2. CALCULATION OF PLASMA EQUILIBRIUM COMPOSITION It is possible to calculate plasma composition in the assumption of LTE using temperature and electron density as known parameters. The simplest situation is when we have electric arc discharge in monoatomic gas such as argon. The calculation of the plasma composition in this case can be carried out by solution of the equations of perfect gas, charge neutrality and Saha at a given pressure. For arc discharge between copper electrodes we have to add one more Saha equation due to the presence of copper vapour in the discharge volume and equation of charge neutrality must be improved for copper ion density. When we consider electric arc discharge in molecular gases or its mixtures, the influence of processes of chemical reactions must be included in the calculation of the plasma composition. The next problem is in determination of the most important chemical reactions. For example, carbon dioxide can be chosen as plasma working gas. More than ten reactions occur for this molecule and its secondary particles. In our previous investigation [1] we considered that with increasing temperature molecules of carbon dioxide dissociate in such way: CO2 ⇔ C + 2O . (1) As dissociation energies of molecules O2 (5.1 eV) and C2 (6.2 eV) are rather low it was assumed that only atoms and ions of oxygen and carbon would be present in plasma. The ionization potential of molecules CO2 is rather high (13.79 eV) and the amount of such molecules is insignificant as the dissociation degree of carbon dioxide at temperature value 6000 K equals 0.986 [1]. Consequently, the amount of ions CO2 + would be negligible. It was considered that there are following particles in plasma: Cu, Cu+, C, C+, O, O+, CO2 and electrons. In this paper to describe chemical reactions in carbon dioxide we took into account next reactions: CO2 ⇔ CO + ½O2 (2) CO ⇔ C + O . (2) O2 ⇔ 2O (2) Therefore the calculation of the plasma composition was carried out by solution of the equations of perfect gas (3), charge neutrality (4), Saha (5), Guldberg-Waage (6) and global chemical equilibrium (7) at an atmospheric pressure using temperature and electron density obtained from experimental investigation. The ionization potentials of molecules CO and O2 are 14.01 eV and 12.08 eV respectively, therefore their presence can be neglected. In such improved calculation we considered that plasma consist from Cu, Cu+, C, C+, O, O+, CO, O2, CO2 and electrons. allbTNkp = , (3) ∑ += ie NN , (4) O C, Cu, ,),( ⇒= + i N NN NTS i ie ei , (5) 22 /)( 2/1 COOCOCO NNNTD = , COOCCO NNNTD /)( = , (6) 22 /)( 2 OOO NNTD = , ++ ++=++ CCCOOOO NNNNNN 222 2 . (7) Such approach shows very good agreement with other authors [2] in the range 3000 K < T < 15000 K. 2. EXPERIMENTAL INVESTIGATIONS The arc was ignited between the end surfaces of the non- cooled electrodes in a working gas flow of 6.45 slpm. The diameter of the rod electrodes was of 6 mm. All experimental investigations were carried out in average cross section of discharge gap of 8 mm at arc currents 3.5 and 30 A. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. № 6. 171 Series: Plasma Physics (14), p. 171-173. mailto:boretskij@univ.kiev.ua Because of the discharge spatial and temporal instabi- lity the real-time recording of the spatial spectral line emission was used. A CCD linear image sensor accomplished fast scanning of spatial distributions of radiation intensity [3]. To determine the radial profile of electron density we investigated the shape of spectral line CuI 515.3 nm broadened by the dominating quadratic Stark effect. The measurements were carried out by techniques based on a Fabri-Perot interferometer (FPI) [3]. Unfortunately the width of this spectral line at arc current 3.5 A is practically comparable with instrument function of FPI. Therefore, to extend the measuring range of the electron density we studied the radial distribution of absolute intensity of a spectral line CuI 465.1 nm [3]. The radial temperature profiles T(r) were determined by Boltzmann plot method using CuI spectral lines 465.1, 510.5, 515.3, 521.8 and 578.2 nm. We used spectroscopic data from [4]. 3. RESULTS AND DISCUSSIONS Radial profiles of plasma temperature T(r) and electron density Ne(r) for different experimental modes are shown in Figs. 1-4. These results were used in calculation of plasma compositions (see Figs. 5, 6) by improved set of equations Eq. 3-7. 0 1 2 4500 5000 5500 6000 T, K r, mm N e , m-3 Ne T 1E20 1E21 Fig.1. Radial profiles of T and Ne for CO2 flow at 3.5 A 0 2 4 6000 7000 8000 9000 T, K r, mm Ne, m -3 Ne T 1E21 1E22 Fig.2. Radial profiles of T and Ne for CO2 flow at 30 A According to previous calculations [1] the electric discharge plasma in CO2 flow at arc currents 3.5 and 30 A cannot be in LTE. In our case this conclusion confirmed only at arc current 30A in axial region of discharge (see Fig. 6). The difference at 3.5 A can be explained by analysis of approaches for calculation equilibrium composition. In contrast to [1] we add into consideration CO and O2 in plasma. As one can see densities of these particles are sufficiently high (see Fig. 5). Therefore, it is necessary to take into consideration CO and O2 particles for temperatures lower than 6000 K. In the range 6000 < T < 15000 K simplified technique [1] can be used. 0 1 2 3 4000 4800 5600 T, K r, mm Ne, m -3 Ne T 1E19 1E20 1E21 Fig.3. Radial profiles of T and Ne for Ar flow at 3.5 A 0 1 2 3 4 5 4000 6000 8000 T, K r, mm Ne, m -3 NeT 1E21 1E22 Fig.4. Radial profiles of T and Ne for CO2 flow at 30 A 0 1 2 1E19 1E21 1E23 O 2 C C+ O+ Cu+ Cu CO 2 O N j , m-3 r, mm CO e Fig.5. Plasma composition for CO2 flow at 3.5 A 0 1 2 3 4 5 1E19 1E21 1E23 O2 C C+ O+ Cu+ Cu CO 2 O Nj, m -3 r, mm CO e Fig.6. Plasma composition for CO2 flow at 30 A 172 0 1 2 3 1E16 1E18 1E20 1E22 1E24 Cu Ar+ Cu+ Ar N j , m-3 r, mm e Fig.7. Plasma composition for Ar flow at 3.5 A 0 1 2 3 4 5 1E16 1E18 1E20 1E22 1E24 Cu Ar+ Cu+ Ar Nj, m -3 r, mm e Fig.8. Plasma composition for Ar flow at 30 A In paper [1] the non-LTE state of CO2 plasma was explained by the thermal dissociation of molecules of working gas and hydrodynamic cooling of a gas flow. To estimate the influence of such gas cooling we provide similar investigations where argon as working gas was used. It was found (see Figs. 7,8) that this effect have no influence on the deviation from LTE in argon plasma. Therefore, one can assume that hydrodynamic cooling would not effect on the state of CO2 plasma at the same conditions as well. By this assumption it is possible to suppose that the thermal dissociation play the key role in deviation from LTE in CO2 plasma at arc current 30 A. CONCLUSIONS The technique of calculation of the CO2 plasma equilibrium composition was improved. It was shown that in the range of temperatures lower than 6000 K it is necessary to take into account CO and O2 particles. It was shown that hydrodynamic cooling does not effect on the deviation from LTE in monoatomic plasma at the flow rate of 6.45 slpm. It is reason to state that this effect has no influence on state of molecule gas plasma too. Therefore, it was assumed that only the thermal dissociation plays the key role in deviation from LTE in CO2 plasma. REFERENCES 1. A.N. Veklich, I.L. Babich, A.I. Cheredarchuk. Thermal dissociation in thermal plasma of electric arc discharges in air and carbon dioxide// Proc. of 15th Int. Symp. on Plasma Chem. V.III., Orleans 9-13 July, 2001/ GREMI, CNRS, Orleans, 2001, p. 849-853. 2. Y. Cressault, P. Teulet, J.J Gonzalez, A. Gleizes, Ph. Robin-Jouan. Transport properties of CO2 arc plasma: application for circuit-breaker modeling// Contributed papers of XVIth Symp. on Phys. of Switch. Arc, Brno 5-9 Sept., 2005/ Univ. of Techn., Brno 2005, p. 46-49. 3. I.L. Babich, V.F. Boretskij and A.N. Veklich. Shapes of spectral lines of nonuniform plasma of electric arc discharge between copper electrodes// AIP Conference Proc. 938. 2007, p. 252-257. 4. C.H. Corliss and W.R. Bozman. Experimental Transi- tion Probabilities for Spectral Lines of Seventy Elements. Moscow: “Mir”, 1968 (in Russian). Article received 22.09.08. ПЛАЗМА ЭЛЕКТРОДУГОВОГО РАЗРЯДА МЕЖДУ МЕДНЫМИ ЭЛЕКТРОДАМИ В ПОТОКЕ ГАЗА И.Л. Бабич, В.Ф. Борецкий, А.Н. Веклич Спектроскопическими методами исследована термическая многокомпонентная плазма электродугового разряда между медными электродами в потоках аргона и углекислого газа. Обсуждается методика расчета равновесного состава плазмы. Оценено влияние гидродинамического охлаждения потоком газа на состояние плазмы. Предполагается, что термическая диссоциация молекул рабочего газа является основным механизмом отклонения от локального термодинамического равновесия в плазме. ПЛАЗМА ЕЛЕКТРОДУГОВОГО РОЗРЯДУ МІЖ МІДНИМИ ЕЛЕКТРОДАМИ У ПОТОЦІ ГАЗУ І.Л. Бабіч, В.В. Борецький А.М. Веклич Спектроскопічними методами досліджено термічну багатокомпонентну плазму електродугового розряду між мідними електродами у потоках аргону та вуглекислого газу. Обговорюється методика розрахунку рівноважного складу плазми. Оцінений вплив гідродинамічного охолодження потоком газу на стан плазми. Припускається, що термічна дисоціація молекул робочого газу є основним механізмом відхилення від локальної термодинамічної рівноваги в плазмі. 173 1. INTRODUCTION 2. calculation of plasma equilibrium composition 3. Results and Discussions