Vacuum-arc plasma source with steered cathode spot
The improved version of a vacuum arc plasma source with magnetic control of a cathode spot and focusing of plasma stream is described. The advanced structure of the cathode unit, the shortened anode and their swing joint with each other allowed reducing overall dimensions of a source, lowering its m...
Збережено в:
Дата: | 2008 |
---|---|
Автори: | , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2008
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/111030 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Vacuum-arc plasma source with steered cathode spot / D.S. Aksyonov, I.I. Aksenov, Yu.A. Zadneprovsky, A.M. Loboda, S.I. Mel’nikov, V.M. Shulayev // Вопросы атомной науки и техники. — 2008. — № 6. — С. 210-212. — Бібліогр.: 4 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-111030 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1110302017-01-08T03:03:55Z Vacuum-arc plasma source with steered cathode spot Aksyonov, D.S. Aksenov, I.I. Zadneprovsky, Yu.A. Loboda, A.M. Mel’nikov, S.V. Shulayev, V.M. Low temperature plasma and plasma technologies The improved version of a vacuum arc plasma source with magnetic control of a cathode spot and focusing of plasma stream is described. The advanced structure of the cathode unit, the shortened anode and their swing joint with each other allowed reducing overall dimensions of a source, lowering its material capacity, increasing weight of the consumable cathode material, simplifying procedure of replacement of the cathode, improving design and raising performance data of the source. On operational characteristics of the new plasma source exceeds the best modern plasma sources of similar designation. Описаний удосконалений варіант вакуумно-дугового джерела плазми з керованою магнітним полем катодною плямою й фокусуванням вихідного плазмового потоку. Удосконалена конструкцію катодного вузла, укорочений анод та їх шарнірне з’єднання один з одним дозволили скоротити габаритні розміри джерела, знизити його матеріалоємність, збільшити масу катодного матеріалу, що витрачається, спростити операцію заміни катода, покращити дизайн і підвищити робочі характеристики джерела. Описан усовершенствованный вариант вакуумно-дугового источника плазмы с магнитным управлением катодным пятном и фокусировкой выходного потока. Усовершенствованная конструкция катодного узла, укороченный анод и их шарнирное соединение друг с другом позволили сократить габаритные размеры источника, снизить его материалоёмкость, увеличить массу расходуемого катодного материала, упростить операцию замены катода, улучшить дизайн и повысить рабочие характеристики источника. 2008 Article Vacuum-arc plasma source with steered cathode spot / D.S. Aksyonov, I.I. Aksenov, Yu.A. Zadneprovsky, A.M. Loboda, S.I. Mel’nikov, V.M. Shulayev // Вопросы атомной науки и техники. — 2008. — № 6. — С. 210-212. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 52.77.-j http://dspace.nbuv.gov.ua/handle/123456789/111030 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies |
spellingShingle |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies Aksyonov, D.S. Aksenov, I.I. Zadneprovsky, Yu.A. Loboda, A.M. Mel’nikov, S.V. Shulayev, V.M. Vacuum-arc plasma source with steered cathode spot Вопросы атомной науки и техники |
description |
The improved version of a vacuum arc plasma source with magnetic control of a cathode spot and focusing of plasma stream is described. The advanced structure of the cathode unit, the shortened anode and their swing joint with each other allowed reducing overall dimensions of a source, lowering its material capacity, increasing weight of the consumable cathode material, simplifying procedure of replacement of the cathode, improving design and raising performance data of the source. On operational characteristics of the new plasma source exceeds the best modern plasma sources of similar designation. |
format |
Article |
author |
Aksyonov, D.S. Aksenov, I.I. Zadneprovsky, Yu.A. Loboda, A.M. Mel’nikov, S.V. Shulayev, V.M. |
author_facet |
Aksyonov, D.S. Aksenov, I.I. Zadneprovsky, Yu.A. Loboda, A.M. Mel’nikov, S.V. Shulayev, V.M. |
author_sort |
Aksyonov, D.S. |
title |
Vacuum-arc plasma source with steered cathode spot |
title_short |
Vacuum-arc plasma source with steered cathode spot |
title_full |
Vacuum-arc plasma source with steered cathode spot |
title_fullStr |
Vacuum-arc plasma source with steered cathode spot |
title_full_unstemmed |
Vacuum-arc plasma source with steered cathode spot |
title_sort |
vacuum-arc plasma source with steered cathode spot |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2008 |
topic_facet |
Low temperature plasma and plasma technologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/111030 |
citation_txt |
Vacuum-arc plasma source with steered cathode spot / D.S. Aksyonov, I.I. Aksenov, Yu.A. Zadneprovsky, A.M. Loboda, S.I. Mel’nikov, V.M. Shulayev // Вопросы атомной науки и техники. — 2008. — № 6. — С. 210-212. — Бібліогр.: 4 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT aksyonovds vacuumarcplasmasourcewithsteeredcathodespot AT aksenovii vacuumarcplasmasourcewithsteeredcathodespot AT zadneprovskyyua vacuumarcplasmasourcewithsteeredcathodespot AT lobodaam vacuumarcplasmasourcewithsteeredcathodespot AT melnikovsv vacuumarcplasmasourcewithsteeredcathodespot AT shulayevvm vacuumarcplasmasourcewithsteeredcathodespot |
first_indexed |
2025-07-08T01:31:54Z |
last_indexed |
2025-07-08T01:31:54Z |
_version_ |
1837040470465708032 |
fulltext |
VACUUM-ARC PLASMA SOURCE WITH STEERED
CATHODE SPOT
D.S. Aksyonov, I.I. Aksenov, Yu.A. Zadneprovsky, A.M. Loboda, S.I. Mel’nikov, V.M. Shulayev
National Science Center "Kharkov Institute of Physics and Technology", Kharkov, Ukraine,
E-mail: iaksenov@kipt.kharkov.ua
The improved version of a vacuum arc plasma source with magnetic control of a cathode spot and focusing of
plasma stream is described. The advanced structure of the cathode unit, the shortened anode and their swing joint with
each other allowed reducing overall dimensions of a source, lowering its material capacity, increasing weight of the
consumable cathode material, simplifying procedure of replacement of the cathode, improving design and raising
performance data of the source. On operational characteristics of the new plasma source exceeds the best modern
plasma sources of similar designation.
PACS: 52.77.-j
1. INTRODUCTION
The cathode vacuum arc is the basic tool in vacuum-
arc coating deposition techniques. A number of plasma
sources on the basis of the discharge of this type is
developed. These sources are intended for the decision of
various technological problems: from deposition of thin
and superthin (2 − 3 nm) wear resistant antifrictional and
optical coatings – to growing thick and superthick (up to
1.5 − 2.0 mm) multi-layered structures [1]. Vacuum arc
plasma sources with magnetic steering of a cathode spot
(CS) and magnetic focusing of plasma stream are widely
used. However big longitudinal size, high material cost
and inconvenient consumable cathode replacement,
should be considered as drawbacks of this source.
Deposition of thick and superthick condensate layers
needs long operation time of the plasma source without
process stopping and without working chamber opening
for cathode replacement. In this case the indispensable
requirement to the plasma source is the increased reserve
of consumable cathode material on the basis of which the
coating is formed. Such requirement is satisfied with
sources which have extended cylindrical cathode [2].
They have possibility of cathode shifting inside the source
when it shortens due to erosion. However such ability of
displacement of the cathode is reached by considerable
complication of the source construction. The relatively
big longitudinal size of the source reduces ergonomic
qualities and appearance of installation as a whole.
This work describes the new model of the plasma
source which design provides the said problems solution.
2. THE PLASMA SOURCE STRUCTURE.
EXPERIMENTAL DETAILS
The design of the source implements the principle of
cathode spot existence zone stabilization on the electrode
working surface by "bottle necked" type magnetic field
located behind rear cathode face.. Magnetic field in the
anode cavity is generated by focusing coils. Correction of
magnetic field, which provides stable arc burning in the
source during cathode consumption process, is realized by
selection of magnitude and direction of focusing coils
currents. Thus mechanical cathode moving becomes
unnecessary, what leads to cathode unit design
simplification and the source length reducing.
The scheme of the new source is shown in Fig. 1. Its
cathode 1 has the form of the truncated cone with the
basis of 80 − 100 mm and initial height 50 mm, so the
reserve of consumable cathode material is two or three
times higher than for a standard prototype source having
cathode with 60 mm basis and height of 40 mm. In our
experiment titanium was used as a cathode material.
Anode 2 is made of nonmagnetic stainless steel and
arranged coaxially with the cathode. Internal diameter of
the anode is 160 mm, the length of a current-collecting
part of the anode is about 150 mm. The anode walls and
the back end face of the cathode are water-cooled (not
shown). The spark triggering device 3 of contactless type
is located opposite to the lateral surface of the cathode
close to its basis. The cathode holder with elements of
bayonet-type mount, a supply of cooling water to the
cathode and sealing of all connections on the scheme is
designated by numeral 4. The cylindrical part of auxiliary
anode 5 shields the lateral walls of the cathode holder 4,
and its face part in the form of a flat ring adjoins the basis
of the cathode with a gap of 1.5 − 2.0 mm. On the
auxiliary anode which is also an element of the triggering
device [1], "spark-plug" of this device is fixed. The
210 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2008. № 6.
Series: Plasma Physics (14), p. 210-212.
Fig. 1. Scheme of the vacuum-arc source under
investigation
cathode unit, the auxiliary anode and the triggering device
are fixed on flange 6. The swing joint of the flange 6 with
the anode 2 considerably facilitates access to all elements
mounted on the flange. Such design in a combination with
bayonet-type mount of the cathode considerably
simplifies procedure of replacement of the cathode.
The new design of the cathode unit and the shortened
anode have introduced a possibility to reduce length of
the source in two times (256 mm) in comparison with the
prototype source (560 mm). On the anode the stabilizing
coil S and two focusing coils, F1 and F2, are placed. The
stabilizing coil consists of 2100 turns, each focusing coil
contains 380 turns. Coils copper expenses are 30% less
than in a prototype source. Numerals 7, 8 and 9 designate
parts of protective casing. The dashed line 10 designates a
site of the substrate holder. In a cavity of the cathode
holder the cylindrical core 11 is placed. It is made of
magnetic steel and serves as magnetic concentrator for
correction of geometry of magnetic field distribution near
to a lateral surface of the cathode [3]. The photograph of
the plasma source described is shown in Fig. 2.
Titanium coatings were deposited on stainless steel
samples of (20×10×1.5) mm in size. The samples were
mounted on the flat substrate holder on distance of
120 mm from the end face of the anode. The coating
deposition rate was defined as thickness or weight of the
condensate deposited during a time unit onto a unit of
area. Thickness of coating was measured by means of
interference microscope as a height of a step between the
coating surface and the substrate surface covered by a
mask before deposition. Operation stability of the plasma
source was estimated by arc spontaneous decay
frequency, triggering efficiency – by quantity of the
triggering pulses which preceded ignition of the arc
discharge.
3. RESULTS AND DISCUSSION
In conditions of high vacuum (~ 2∙10–5 Torr) rather
stable work of the investigated plasma source takes place
in wide ranges of key parameters describing an operating
mode of the source: arc current (Ia) – from 80 up to 160 A,
stabilizing coil current (Is) – from 0.5 up to 1.4 A,
focusing coil current (If) – from 0 up to 2.5 A.
Fig. 3 illustrates influence of the arc current and
focusing coils current on stability of arc burning in the
source. The presented dependences are typical for vacuum
arc plasma sources with axisymmetrical focusing
magnetic fields in the anode cavity. The arc is most stable
The arc is most stable when magnetic field of coils F1 and
F2 is absent (If = 0). The arc decay frequency n thus is
minimal, and arc ignition is most facilitated – the arc is
ignited commonly from the first starting pulse. It is
caused by favorable geometry of magnetic fields in the
source (Fig. 4): the angle of crossing of magnetic lines of
force with a surface of the cathode in a point of initiation
of the arc is great enough [4] for pushing the cathode spot
off the lateral surface of the cathode to its working end
face at the stage of ignition and in case of spontaneous
runaway of the spot onto the lateral surface of the
cathode. Component of the magnetic field tangential to
the anode surface hinders current transfer between the
cathode and the anode.
Fig. 2. Photograph of the vacuum-arc plasma source
without protective casing (a); cathode unit is in the
opened state (b)
a b
Fig. 3. Influence of the focusing coil current (I
f
) and
the arc current (I
a
) on the frequency of spontaneous
decay of the arc (n). I
s
= 1.4 A; p = 2∙10−5 Torr
Fig. 4. Distributions of magnetic fields. (a) I
s
= 1.4 A,
I = 0; (b)
I
f
= 1.5 A; (c)
I
f
= 3 A; (d)
I
f
= 1.5 A
a b
c d
In considered case this component is minimal, thus the
arcing conditions are optimum. With strengthening of the
focusing magnetic field (Fig. 4b,c) the angle α decreases,
transversal component of the magnetic field (in relation to
direction of electronic current onto the anode) becomes
stronger, and, hence, conditions for effective ignition and
stable arcing deteriorates. This explains arc decay
frequency growth with strengthening of magnetic field in
the anode. Some decrease of n, observed with growth of If
over ~ 2 A, can be explained by some stabilization of the
arc by a longitudinal magnetic field when the arc begins
to burn mainly onto the chamber-anode. With increase in
the arc current the plasma density in the discharge gap
increases resulting in decrease of electrons magnetization
degree. Plasma conductivity across the magnetic field (in
direction towards the anode) increases, resulting in
increase of the arc stability. Creation of favorable
conditions for ignition (increase in the angle α) is
promoted by presence of the ferromagnetic core near the
cathode rear end (Fig. 4d). It should be mentioned once
again, that the data cited above relate to rather low
pressure (nearby 2∙10−5 Torr). This pressure is the most
adverse for arcing. At presence of working gases (N2, Ar)
at pressure more then 2∙10−5 Torr the arc burns practically
without decays.
Radial distributions of the growth rate of titanium
condensate are shown in Fig. 5. They were received at the
lack of a current in focusing coils (If = 0) and in
conditions of focusing of a plasma stream (If = 2.0 A).
Currents in the coils were of the same directions. It can be
seen that focusing in such conditions leads to appreciable
narrowing of the directional pattern of the stream and to
increasing in coating growth rate in the maximum of
distribution more than twice.
4. CONCLUSIONS
The new source in comparison with a standard
source-prototype is characterized twice by smaller length
and the improved design, consumption of a copper wire
for the coils manufacturing is lowered by 30 %, and
reserve of a cathode material is increased in 2-3 times.
The cathode unit construction and its swing joint
with the anode provides an easy access to all elements
disposed at the flange of the unit, and considerably
simplifies procedure of replacement of the cathode
The lower limit of the arc current of source
investigated makes up about 80 A. At the currents more
than 90 A and at presence of working gases (N2, Ar, etc.,
pressure about 2∙10–4 Torr and more) the arc burns
without decays. At distance of 120 mm from the exit of
the source the deposition rate of titanium film reaches 40
microns per hour. It exceeds the level of the best modern
models of plasma sources of similar designation.
REFERENCES
1. I.I. Aksenov. A vacuum arc in erosion plasma
sources. Kharkov: NSC KIPT, 2005, p.212 (In
Russian).
2. Ukraine Pat. No.46.887 June 17, 2002/ І.І. Aksenov,
V.A. Belous, Yu.A. Zadneprovsky, N.S. Lomino,
V.D. Ovcharenko (In Ukranian).
3. Author Sert. of the USSR №1.111.671, 1984, priority
of July 5, 1982/ I.I. Aksenov, V.G. Bren,
V.G. Padalka, V.M. Khoroshikh, A.M. Chikryzhov (In
Russian).
4. K.K. Zabello, Yu.A. Barinov, A.M. Chaly,
A.A. Logatchev, S.M. Shkol’nik. Experimental Study
of Cathode Spot Motion and burning Voltage of Low
Current Vacuum Arc in Magnetic Field // IEEE Trans.
Plasma Sci. 2005, v.33, N 5, p.1553 − 1559.
Article received 14.10.08.
ВАКУУМНО-ДУГОВОЙ ИСТОЧНИК ПЛАЗМЫ С УПРАВЛЯЕМЫМКАТОДНЫМ ПЯТНОМ
И.И. Аксёнов, Д.С. Аксёнов, Ю.А. Заднепровский, А.М. Лобода, С.И. Мельников, В.М. Шулаєв
Описан усовершенствованный вариант вакуумно-дугового источника плазмы с магнитным управлением
катодным пятном и фокусировкой выходного потока. Усовершенствованная конструкция катодного узла,
укороченный анод и их шарнирное соединение друг с другом позволили сократить габаритные размеры
источника, снизить его материалоёмкость, увеличить массу расходуемого катодного материала, упростить
операцию замены катода, улучшить дизайн и повысить рабочие характеристики источника..
ВАКУУМНО-ДУГОВЕ ДЖЕРЕЛО ПЛАЗМИ З КЕРОВАНОЮ КАТОДНОЮ ПЛЯМОЮ
І.І. Аксьонов, Д.С. Аксьонов, Ю.О. Задніпровський, О.М. Лобода, С.І. Мельников, В.М. Шулаєв
Описаний удосконалений варіант вакуумно-дугового джерела плазми з керованою магнітним полем
катодною плямою й фокусуванням вихідного плазмового потоку. Удосконалена конструкцію катодного вузла,
укорочений анод та їх шарнірне з’єднання один з одним дозволили скоротити габаритні розміри джерела,
знизити його матеріалоємність, збільшити масу катодного матеріалу, що витрачається, спростити операцію
заміни катода, покращити дизайн і підвищити робочі характеристики джерела.
Fig. 5. Radial distribution of coating deposition rate (v)
at distance of 120 mm from the anode. х – distance from
the source axis in horizontal direction. All coils of have
additive polarity
|