Pure strontium-87 isotope in rubidium biotite from the ukrainian shield

In lithium pegmatites of Shpoljano-Tashlyksky ore area (Kirovograd block of the Ukrainian shield) the biotites enriched with rubidium are distinguished. X-ray and electron-microprobe study of these minerals has shown that they attributed to low ferruginous biotites of structural modification 1M. By...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2011
Hauptverfasser: Andreev, A.V., Valter, A.A., Dikiy, N.P., Dovbnya, A.N., Eremenko, G.K., Lyashko, Yu.V., Pisansky, A.I., Storizhko, V.E., Uvarov, V.L.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2011
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/111244
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Pure strontium-87 isotope in rubidium biotite from the ukrainian shield / A.V. Andreev, A.A. Valter, N.P. Dikiy1, A.N. Dovbnya, G.K. Eremenko2,Yu.V. Lyashko, A.I. Pisansky, V.E. Storizhko, V.L. Uvarov // Вопросы атомной науки и техники. — 2011. — № 3. — С. 54-59. — Бібліогр.: 14 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-111244
record_format dspace
spelling irk-123456789-1112442017-01-10T03:02:16Z Pure strontium-87 isotope in rubidium biotite from the ukrainian shield Andreev, A.V. Valter, A.A. Dikiy, N.P. Dovbnya, A.N. Eremenko, G.K. Lyashko, Yu.V. Pisansky, A.I. Storizhko, V.E. Uvarov, V.L. Ядернo-физические методы и обработка данных In lithium pegmatites of Shpoljano-Tashlyksky ore area (Kirovograd block of the Ukrainian shield) the biotites enriched with rubidium are distinguished. X-ray and electron-microprobe study of these minerals has shown that they attributed to low ferruginous biotites of structural modification 1M. By nuclear-physics methods the concentration of rubidium, ⁸⁷Rb and ⁸⁷Sr were defined. By X-ray-fluorescent method Sr/Rb-ratio was defined. From these data the cleanliness ⁸⁷Sr s%=⁸⁷Sr/Srtot×100=96⁺⁴₋₆% received. The natural isotopic abundance of ⁸⁷Sr is 7%. Rb/Sr age of the mineral is estimated as 2.14 billion years that will be coordinated with earlier results. У літієвих пегматитах Шполяно-Ташлицького рудного району (Кіровоградський блок Українського щита) зустрінуті біотити, збагачені на рубідій. Рентгенографічне і електронно-мікрозондове вивчення цих мінералів доводить, що вони відносяться до низькозалізистих біотитів структурної модифікації 1M. Ядерно-фізичними методами визначені концентрації ⁸⁷Rb і ⁸⁷Sr, рентген-флюоресцентним методом - Sr/Rb - співвідношення. За цими даними отримали чистоту ⁸⁷Sr s%=⁸⁷Sr/Srtot×100=96⁺⁴₋₆% порівняно із звичайною розповсюдженістю ⁸⁷Sr 7%. Rb/Sr вік мінерала оцінений в 2.14 мільярди років, що узгоджується з результатами, що були отримані раніше. В литиевых пегматитах Шполяно-Ташлыкского рудного района (Кировоградский блок Украинского щита) встречены биотиты, обогащённые рубидием. Рентгенографическое и электронно-микрозондовое изучение этих минералов показало, что они относятся к низко железистым биотитам структурной модификации 1M. Ядерно-физическими методами определены концентрации ⁸⁷Rb и ⁸⁷Sr, рентген-флюоресцентным методом - Sr/Rb - отношение. Из этих данных получили чистоту ⁸⁷Sr s%=⁸⁷Sr/Srtot×100=96⁺⁴₋₆% по сравнению с обычной распространённостью ⁸⁷Sr 7%. Rb/Sr возраст минерала оценен в 2.14 миллиарда лет, что согласуется с ранее полученными результатами. 2011 Article Pure strontium-87 isotope in rubidium biotite from the ukrainian shield / A.V. Andreev, A.A. Valter, N.P. Dikiy1, A.N. Dovbnya, G.K. Eremenko2,Yu.V. Lyashko, A.I. Pisansky, V.E. Storizhko, V.L. Uvarov // Вопросы атомной науки и техники. — 2011. — № 3. — С. 54-59. — Бібліогр.: 14 назв. — англ. 1562-6016 PACS: 29.17.+w; 28.41.Kw http://dspace.nbuv.gov.ua/handle/123456789/111244 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Ядернo-физические методы и обработка данных
Ядернo-физические методы и обработка данных
spellingShingle Ядернo-физические методы и обработка данных
Ядернo-физические методы и обработка данных
Andreev, A.V.
Valter, A.A.
Dikiy, N.P.
Dovbnya, A.N.
Eremenko, G.K.
Lyashko, Yu.V.
Pisansky, A.I.
Storizhko, V.E.
Uvarov, V.L.
Pure strontium-87 isotope in rubidium biotite from the ukrainian shield
Вопросы атомной науки и техники
description In lithium pegmatites of Shpoljano-Tashlyksky ore area (Kirovograd block of the Ukrainian shield) the biotites enriched with rubidium are distinguished. X-ray and electron-microprobe study of these minerals has shown that they attributed to low ferruginous biotites of structural modification 1M. By nuclear-physics methods the concentration of rubidium, ⁸⁷Rb and ⁸⁷Sr were defined. By X-ray-fluorescent method Sr/Rb-ratio was defined. From these data the cleanliness ⁸⁷Sr s%=⁸⁷Sr/Srtot×100=96⁺⁴₋₆% received. The natural isotopic abundance of ⁸⁷Sr is 7%. Rb/Sr age of the mineral is estimated as 2.14 billion years that will be coordinated with earlier results.
format Article
author Andreev, A.V.
Valter, A.A.
Dikiy, N.P.
Dovbnya, A.N.
Eremenko, G.K.
Lyashko, Yu.V.
Pisansky, A.I.
Storizhko, V.E.
Uvarov, V.L.
author_facet Andreev, A.V.
Valter, A.A.
Dikiy, N.P.
Dovbnya, A.N.
Eremenko, G.K.
Lyashko, Yu.V.
Pisansky, A.I.
Storizhko, V.E.
Uvarov, V.L.
author_sort Andreev, A.V.
title Pure strontium-87 isotope in rubidium biotite from the ukrainian shield
title_short Pure strontium-87 isotope in rubidium biotite from the ukrainian shield
title_full Pure strontium-87 isotope in rubidium biotite from the ukrainian shield
title_fullStr Pure strontium-87 isotope in rubidium biotite from the ukrainian shield
title_full_unstemmed Pure strontium-87 isotope in rubidium biotite from the ukrainian shield
title_sort pure strontium-87 isotope in rubidium biotite from the ukrainian shield
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2011
topic_facet Ядернo-физические методы и обработка данных
url http://dspace.nbuv.gov.ua/handle/123456789/111244
citation_txt Pure strontium-87 isotope in rubidium biotite from the ukrainian shield / A.V. Andreev, A.A. Valter, N.P. Dikiy1, A.N. Dovbnya, G.K. Eremenko2,Yu.V. Lyashko, A.I. Pisansky, V.E. Storizhko, V.L. Uvarov // Вопросы атомной науки и техники. — 2011. — № 3. — С. 54-59. — Бібліогр.: 14 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT andreevav purestrontium87isotopeinrubidiumbiotitefromtheukrainianshield
AT valteraa purestrontium87isotopeinrubidiumbiotitefromtheukrainianshield
AT dikiynp purestrontium87isotopeinrubidiumbiotitefromtheukrainianshield
AT dovbnyaan purestrontium87isotopeinrubidiumbiotitefromtheukrainianshield
AT eremenkogk purestrontium87isotopeinrubidiumbiotitefromtheukrainianshield
AT lyashkoyuv purestrontium87isotopeinrubidiumbiotitefromtheukrainianshield
AT pisanskyai purestrontium87isotopeinrubidiumbiotitefromtheukrainianshield
AT storizhkove purestrontium87isotopeinrubidiumbiotitefromtheukrainianshield
AT uvarovvl purestrontium87isotopeinrubidiumbiotitefromtheukrainianshield
first_indexed 2025-07-08T01:50:38Z
last_indexed 2025-07-08T01:50:38Z
_version_ 1837041649713152000
fulltext PURE STRONTIUM-87 ISOTOPE IN RUBIDIUM BIOTITE FROM THE UKRAINIAN SHIELD A.V.Andreev2,3, A.A.Valter2∗, N.P.Dikiy1, A.N.Dovbnya1, G.K.Eremenko2, Yu.V. Lyashko1, A.I. Pisansky2, V.E. Storizhko2, V.L. Uvarov1 1National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine 2Institute of Applied Physics NAS Ukraine, 40030, Sumy, Ukraine 3T. Shevchenko National University, 03022, Kiev, Ukraine (Received April 15, 2011) In lithium pegmatites of Shpoljano-Tashlyksky ore area (Kirovograd block of the Ukrainian shield) the biotites enriched with rubidium are distinguished. X-ray and electron-microprobe study of these minerals has shown that they attributed to low ferruginous biotites of structural modification 1M. By nuclear-physics methods the concentration of rubidium, 87Rb and 87Sr were defined. By X-ray-fluorescent method Sr/Rb–ratio was defined. From these data the cleanliness 87Sr σ%=87Sr/Srtot×100=96+4 −6% received. The natural isotopic abundance of 87Sr is 7%. Rb/Sr age of the mineral is estimated as 2.14 billion years that will be coordinated with earlier results. PACS: 29.17.+w; 28.41.Kw 1. INTRODUCTION A pure strontium-87 isotope is formed in mineral by accumulation of the products from a β-decay of rubidium-87 according to the law [1]: Crg = Crd [ exp( t ln2 T1/2 )− 1 ] , (1) where Crg is the current content of a radiogenic iso- tope, Crd is the current content of a radioactive iso- tope, t is the age of a mineral, T1/2 is the the half-life period of radioactive isotope. The accumulation of a pure isotope is promoted by geochemical and crystal-chemistry factors [2]. Earlier [2,3] we have established the isotope cleanli- ness of radiogenic 187Os, resulting from a β-decay of 187Re and present to the extent of 99.99% (while its natural abundance is 1.64%, or 1.96% [4,5]) in ancient Re-bearing molybdenites from Ukrainian ores. This fact can be due to rarity of osmium in geochemical systems, affinity of sedimentation conditions for rhe- nium and molybdenum from hydrotherms and dura- bility of retention of radiogenic osmium in a molyb- denite structure. 87Sr formed as a result of the β-decay of 87Rb has a half-life of 4.88·1010 years and an isotope abundance of 7% [4,5]. The strontium sharply enriched with a radi- ogenic isotope, was first examined by O. Hahn et al. [6] in pollucite (Karbib, South West Africa). L.G. Arens and Z. Mattauh observed nearly pure 87Sr in rubidium-containing late Proterozoic lepido- lites from alkaline pegmatites of Manitoba (Canada). Recently new varieties of ancient highly rubidic micas in Canada and on Kola peninsula have been studied [8,9], however, without reported data on ra- diogenic strontium. 2. Rb-BIOTITE OF THE UKRAINIAN SHIELD We have investigated the ancient Rb-bearing biotite of the Ukrainian shield as potential mineral carrier of isotopic pure strontium-87. In 1889-1990 in the western part of the Kirovograd block the new Shpoliano-Tashlyksky ore area (Fig.1) has been discovered. There the rare metal miner- alization is connected with late Proterozoic gran- ite pegmatites having lithium specialization [9]. In the Stankovatsko-Lipnjazhsky pegmatite field in this area, thin (2...3 cm) streaks of Rb-bearing biotite glimmerites are widely spread, tracing the contacts with amphibolites and their replaced xenolites [10]. The biotite contains increased concentrations of rare alkalis, mainly rubidium. Special studies were carried out on samples of biotite selected by G.K. Ere- menko, as well as on those offered through the cour- tesy of V.N. Bugaenko and D.K. Voznjak. After additional cleaning by gravitational sepa- ration and selection under microscope, the samples were subjected to microprobe analysis and XRD- study. ∗Corresponding author E-mail address: avalter@iop.kiev.ua 54 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2011, N3. Series: Nuclear Physics Investigations (55), p.54-59. Fig.1. Schematic diagram of the geological position of the studied rubidic biotite - the carrier of pure strontium-87 isotope. 1 Archaean blocks of the Ukrainian shield (in circles): 1 - Podolsk; 2 - Pridneprovsky. 2 Kirovograd Proterozoic block. 3 Dneprovo-Donesk basin. 4 Granitoids of the Kirovograd massive. 5 Ra- pakivi granites and the basic rocks of the Korsun-Novomirgorod pluton. 6 Shpoljano-Tashlyksky ore area (a cross indicates the display of Stankovatsky deposit with rubidium-containing biotites). 7 Central-Ukrainian Uranium ore area. 8 geological borders: (a) blocks borders; (b) other borders The factors of crystal-chemistry formulas of biotite samples have been calculated (Tabl.2) from the quantitative microanalysis data (analyst V.M. Vereshchak, Camebax SX-50 with a wave spec- trometer) taking into account earlier chemical analy- sis [12,13]. Table 1. Crystal chemical formulas of biotite samples investigated Nu. Nu. of borehole; depth, m Crystal chemical formula calculated for Si = 3 4 59-89; 126.0 (Cs0.2Rb0.15K0.44Na0.05)(Fe1.21Mg1.5Al0.59Ti0.07)(AlSi3O10)F0.1OH1.9 5 72-90; 247 (Cs0.02Rb0.07K0.87Na0.06)(Fe0.75Mg1.73Al0.14Ti0.08)(AlSi3O10)F0.95OH1.05 6 3-91; 97.5 (Rb0.04K0.80Na0.05Ca0.01)(Fe0.85Mg1.70Al0.64Ti0.08)(AlSi3O10)F0.17OH1.83 7 33-91; 181.5 (Rb0.05K0.84Na0.02)(Fe0.97Mn0.02Mg1.11Al0.71Ti0.12)(AlSi3O10)F0.26OH1.74 9 34-91; 113.5 (Rb0.05K0.99Na0.02)(Fe1.18Mn0.02Mg1.29Al0.7Ti0.02)(AlSi3O10)F0.25OH1.75 10 34-91; 112-113 (Rb0.05K1.02Na0.01)(Fe1.14Mn0.02Mg1.21Al0.64Ti0.13)(AlSi3O10)F0.26OH1.74 X-ray diffractometer patterns recorded by E.E. Grechanovskaja (DRON-2, CuKα γ-radiation, with the speed of the counter rotation of 2◦/min) (Fig.2) compared with data from [13] allow biotite to be ascribed to the ferriferous low variety and the structural modification 1M. 55 Fig.2. X-ray diffraction pattern of biotite samples. On the right: numbers of samples; above: peak indexes for 1M modification 3. THE INVESTIGATION OF THE RUBIDIUM-STRONTIUM ISOTOPE SYSTEM IN BIOTITE Our goal was to determine the content and cleanliness of 87Sr in ancient Rb-biotites and to obtain additional data for their isotope dating. The natural isotope cleanliness of radiogenic 87Sr in biotite does not seem to be as high as the 187Os cleanliness in molybdenite. Strontium has a far greater natural occurrence, than osmium. Moreover, the attachment of strontium atoms to the biotite structure is not so strong as that of osmium in molyb- denite. In interlayer spaces of the mica structure, the Sr2+ ion, approaching in size one-charge ions of alkali metals, can be fixed, creating a certain defect demanding indemnification of valencies, obviously ac- cording to the scheme Rb, OH → Sr, O. This leads to a rather high average content of strontium in biotites of granitoids (0,012%), basic rocks (0,01%) and, especially, alkaline rocks (0.1%) [15], which is approximately by 9 and 10 tenths of the order greater than the probable initial content of os- mium in molybdenite. It is not impossible, however, that reported in [15] average data are considerably increased at the expense of radiogenic strontium. Measurements of the concentrations of radioac- tive (87Rb) and radiogenic (87Sr) nuclides were per- formed using photoactivation analysis on nuclear re- actions. The irradiations of biotite samples were car- ried out with 10 MeV electrons from linear acceler- ators for 87mSr isomer excitation (T1/2=2.805 hour) and bremsstrahlung with Emax=23 MeV for determi- nation of the 87Rb content (T1/2=48.8·109 years). The activities of 87mSr and 84,86Rb were measured with a Ge(Li)-detector (∆1/2=3.2 keV for 1333 keV) and a HP Ge detector (∆1/2=295 eV for 5.9 keV) using standard Rb compounds as well as SrCO3 with natural and enriched 87Sr isotope concentrations. 4. DETERMINATION OF 87Rb The intensity of lines 881.5 keV (85Rb(γ,n)84Rb) and 1077 keV (87Rb(γ,n)86Rb; 85Rb(n,γ)86Rb) were mea- sured by Ge(Li)-detector (Fig.3) after activation of the samples and standards. The results were normalized (measurement time, time after activation, distance from the sample to the detector, detector efficiency, sample mass) and aver- aged for samples (usually 4 measurements on each sample throughout 80 days after activation) and for standards. As standards RbCl and Rb2CO3, were used normalized to the mass of the Rb content. The ratio of the obtained values determines the general Rb and 87Rb content in the samples. For a 56 less intensive 1077 keV line the statistics was found twice as worse on the average and these data were neglected. The general rubidium was calculated. Errors in the determination (%) for Rb and 87Rb were assumed equal, being dependent on the accu- racy of measurements of the 881.5 keV line intensity. Fig.3. A fragment of a typical γ-spectrum of biotite (sample 7, tab.1) activated with a LEA. 37 days after the activation; exposure for 4 hours 5. DETERMINATION OF 87Sr Determination of 87Sr was made using the reactions 87Sr(e,e ′ )87mSr and 87Sr(γ,γ ′ )87mSr (2.803 h) → 87Sr (stab); E=388.5 keV, ni=82.1%. For 87Sr owing to much lower concentrations, than in the case of rubidium, poorer statistics of counts was used. For the most enriched Sr sample (Nu.4) measurements on 87Sr were performed twice: with 11 MeV γ and 10 MeV electrons. The resulting val- ues were practically similar indicating an insignificant error for these concentrations. 6. DETERMINATION OF THE GENERAL STRONTIUM AND CALCULATION OF THE ISOTOPE CLEANLINESS OF 87Sr To determine the general strontium the Rb/Sr-ratios were measured by X-ray-fluorescence. The deter- minations were conducted on separate crystals (by 20 grains with the calculated average value) by the intensity of Kα-lines with the use of an energy- dispersive X-ray spectrometer and monochromatic exciting radiation (crystal-monochromator LiF was adjusted to the Kα-line of a Mo anode of an X-ray tube). The results for rubidium and strontium in the in- vestigated biotite samples are summarized in Tabl.2. As can be seen from the table, only 3 of 6 detec- tions give acceptable values: Srtot/ 87Sr > 1. These are the samples most enriched by strontium. For three other samples this relation is less than unity, i.e. is not meaningful. It would be reasonable to at- tribute such grouping of results to a low accuracy of the determination of 87Sr and Sr/Rb-ratios in low- strontium samples. Assuming the extreme value for Srtot/87Sr=100%, we will arrive at the following aver- age value for 6 samples σ%=87Sr/Srtot×100=96+4 −6% against the natural 87Sr prevalence of 7%. Table.2. Determination of Rubidium (mass %) and Strontium (ppm) in biotites No. Borehole, depth,m Chemical analysis (recal- culation on oxides) µ-probe Total Rb (on the basis of 87Rb) Ratio Sr/Rb (on the basis of X-rays fluores- cence) Total Sr (on the basis of 87Rb and X-rays fluores- cence) 87Sr by accelera- tor based technique 87Sr on the basis of 87Rb (as- sumption t=2.1·109 yr. for all samples) 87Sr/Srtot from columns 7/6 and 8/6 (in brack- ets) 1 2 3 4 5 6 7 8 9 4 59-89, 126.0 2.23 2.14±0.22 2.6±0.02 0.0093 ±0.0013 244 225.5±8.8 226.5 92.4 5 72-90, 247 N/A 1.52±0.06 1.4±0.009 0.0092 ±0.0015 130.5 122.8±6.0 122.9 94.1 6 3-91, 97.5 0.80 0.61±0.04 0.82±0.005 0.089 ±0.0008 73.1 85.4±3.7 71.1 116.8 (96.2) 7 33-91, 181.5 1.16 0.87±0.01 0.9±0.006 0.0085 ±0.0006 74 96.4±3.2 83.1 130.2 (111.4) 9 34-91, 113.5 1.10 0.89±0.02 1.02±0.006 0.0092 ±0.0008 94.2 88.7±4.3 88.4 93.8 10 34-91, 112-113 N/A 0.85±0.03 0.79±0.005 0.0084 ±0.0007 66.4 85.1±3.7 68.4 128 (100.7) 7. DETERMINATION OF ISOTOPE 87Rb/87Sr AGE IN BIOTITES WERE STUDIED On the graph (Fig.4) small circles and square show the 87Rb–87Sr values for the studied samples. Three results, referring to the richest rubidium and stron- tium samples (Nu. 4, 5 and 9, Tabl.1 and 2) give a straight line (1) 87Sr=0.031·87Rb+1 with a slope corresponding to the age of 2.14 billion years. This age correlates with the data [11] indicating a greater age of pegmatites in comparison with the enclosing granitoids (1.8-2.0 billion years). 57 Fig.4. 87Sr–87Rb ratios in biotites under study (explanations in the text) The value of a free member corresponding to the 87Sr value at the moment of mineral formation (87Sr0 = 1 ppm) agrees with the data on the isotope cleanliness of the samples. Assuming as a first ap- proximation, the same parity of strontium isotopes in the mineral forming environment of the alkaline pegmatites at the moment of their crystallization, as now, we will have the average content of other strontium isotopes in three investigated samples, viz. ≈ 13 ppm, which, within the accuracy of measure- ment, agrees with data in tab.2 (≈ 9,7 ppm). Pro- ceeding from this data, the value of the average iso- tope cleanliness σ%=87Sr/Srtot×100≈92% is in good agreement with the average determined for an indi- vidual sample. Other three values, corresponding to rubidium- poorer samples (Nu. 6, 7 and 10) follow a straight line (2) 87Sr=0.025·87Rb+28 with a slope corresponding to the age t=1.76 million years. This value of the effective age is possible as a result of a far-gone gran- itization process. It is more difficult to explain a high value of 87Sr0=28 ppm. Under the assumption of a normal isotope ratio of initial strontium it agrees with the general content of strontium of 400 ppm, which is in conflict with the analytical data. The explanation assuming an abnormal initial isotopic ratio of stron- tium in rubidic mica, contradicts the establishment of the Sr/Rb balance 1.76 billion years ago. A con- sistent explanation of these data can hardly be given. The description of the positions of all 6 points by a single dependence leads to a straight line (3) 87Sr=0.028·87Rb+17 for which the value of the free member is also outside reasonable geological esti- mates. We investigated the third possibility, viz. all 6 points follow the same dependence determined by the position of high-rubidium samples (Nu. 4, 5 and 9, Tabl.1 and 2) assuming for the same maintenance of rubidium that of 87Sr, corresponding to the age of 2.14 billion years. This brought the 87Sr values closer to realistic data with the exception of sample Nu.7. Thus, it seems justified to consider the determi- nations of strontium and, especially of 87Sr in low- maintenance Rb and Sr samples (Nu. 6, 7 and 10) to be insufficiently accurate for geochemical simula- tions. 8. CONCLUSIONS 1. In ores of Ukraine in the mineral carrier - a Rb-biotite - isotopic pure 87Sr (96+4 −6%) was found in concentrations of 225...90 ppm. 2. From nuclear microanalysis data obtained for the 87Sr/87Rb ratio the age of formation of this bi- otite was estimated at 2.14·109 years. References 1. N.A. Titaeva. Nuclear geochemistry. M.: Moscow University publisher, 2000, 336 p. (in Russian). 2. A.A. Valter, V.E. Storizhko, N.P. Dikiy, A.N. Dovbnya, Yu.V. Lyashko, A.N. Berlizov. 58 Nuclear-analytical and mineralogical principles and techniques for prediction and investigation of the native-pure rare isotope occurrence // PAST. Series: Nuclear Physics Investigations. 2005, 6(45), p.142-146. 3. A.A. Valter. Mineralogical aspect of existence of usually rare isotopes in naturally clean state // Proc. Ukraine Mineral. Soc. 2010, v.7, p.5-18 (in Ukranian). 4. E.V. Sobotovich, E.N. Bartnitskiy, O.V. Tsion’, et al. Hand-book of isotopic geochemistry, M.: ”Energoizdat publisher”. 1982, 241p. (in Russian). 5. J.R. Parrington, H.D. Knox, S.L. Breneman, E.M. Baum, F. Feiner (revised by E.M. Baum, H.D. Knox and T.R. Miller). Nuclides and Iso- topes, Sixteen Edition. Lockheed Martion Corpo- ration, 2002, 89 p. 6. O. Hahn, F. Strassmann, J. Mattauch, H. Ewald. Geologische Altersbestimmungen nach der Stron- tiummethode // Forschungen und Forschritte. 1942, N.18, p.353-355. 7. K. Rankama. Isotope geology. Oxford: ”Perga- mon”, 1954, 464p. 8. P. Cerny, R. Chapman, D.K. Teertstra, M. No- vak. Rubidium- and cesium-dominand micas in granitic pegmatites // American Mineralogist. 2003, v.88, p.1832-1835. 9. I.V. Pekov, N.N. Kononova, A.A. Atakhanov, et al. Voloshinit - a new rubidium mica of the gran- ite pegmatites of Voroni tundra (Cola peninsula) // Proc. Russ. Mineral. Soc. 2009, pt.138, N.3, p.96-100 (in Russian). 10. S.V. Nechaev, O.F. Makivchuk, N.A. Belich, et al. The new rare metals area of the Ukrainian shield // Geol. Journ. 1991, N.4, p.119-123 (in Russian). 11. G.K. Eremenko, B.N. Ivanov, N.A. Belich, et al. Mineralogy peculiarities and conditions of forma- tion of lithium pegmatites from Kirovograd block (Ukrainian shield) // Mineralogical Journ. 1996, v.18, N.1, p.48-57 (in Russian). 12. B.N. Ivanov, V.V. Lysenko, O.F. Makivchuk, et al. Exocontact metasomatites of lithium granitic pegmatites of Shpoliano- Tashlykskii rare metal ore area // Mineral recourses of Ukraine. 2000, N.4, p.11-13 (in Russian). 13. V.M. Bugajenko, B.N. Ivanov, G.K. Eremenko, et al. Iron-Magnesium micas from exocontact metasomatites of lithium granitic pegmatites of Shpoliano- Tashlykskii rare metal ore area // Collected articles of Ukr. State Geol. Surv. Inst. 2004, N.1, p.843-848 (in Ukrainian). 14. S.W. Bailey. Crystal structures of clay miner- als and their X-ray identifications Structures of Layer Silicates. True mica group/ G.W. Brind- ley and G. Brown - editors, 1980, 495 p. ЧИСТЫЙ ИЗОТОП СТРОНЦИЙ–87 В РУБИДИЕВОМ БИОТИТЕ УКРАИНСКОГО ЩИТА А.В Андреев, А.А. Вальтер, Н.П. Дикий, А.Н. Довбня, Г.К. Ерёменко, Ю.В. Ляшко, A.И. Писанский, В.Е. Сторижко, В.Л. Уваров В литиевых пегматитах Шполяно-Ташлыкского рудного района (Кировоградский блок Украинского щита) встречены биотиты, обогащённые рубидием. Рентгенографическое и электронно-микрозондовое изучение этих минералов показало, что они относятся к низкожелезистым биотитам структур- ной модификации 1M. Ядерно-физическими методами определены концентрации, 87Rb и 87Sr, рентген-флюоресцентным методом – Sr/Rb - отношение. Из этих данных получили чистоту 87Sr σ%=87Sr/Srtot×100=96+4 −6% по сравнению с обычной распространённостью 87Sr 7%. Rb/Sr возраст ми- нерала оценен в 2.14 миллиарда лет, что согласуется с ранее полученными результатами. ЧИСТИЙ IЗОТОП СТРОНЦIЙ–87 У РУБIДIЄВОМУ БIОТИТI УКРАЇНСЬКОГО ЩИТА А.В. Андрєєв, А.А. Вальтер, М.П. Дикий, А.М. Довбня, Г.К. Єрьоменко, Ю.В. Ляшко, О.I. Писанський, В.Ю. Сторiжко, В.Л. Уваров У лiтiєвих пегматитах Шполяно-Ташлицького рудного району (Кiровоградський блок Українського щита) зустрiнутi бiотити, збагаченi на рубiдiй. Рентгенографiчне i електронно-мiкрозондове вивчення цих мiнералiв доводить, що вони вiдносяться до низькозалiзистих бiотитiв структурної модифiкацiї 1M. Ядерно-фiзичними методами визначенi концентрацiї 87Rb i 87Sr, рентген-флюоресцентним методом – Sr/Rb - спiввiдношення. За цими даними отримали чистоту 87Sr σ%=87Sr/Srtot×100=96+4 −6% порiвня- но iз звичайною розповсюдженiстю 87Sr 7%. Rb/Sr вiк мiнерала оцiнений в 2.14 мiльярди рокiв, що узгоджується з результатами, що були отриманi ранiше. 59