Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup
Using the VVER-1000 fuel element (FE) cladding failure estimation method based on creep energy theory (CET-method), it is shown that practically FE cladding rupture life at normal operation conditions can be controlled by an optimal assignment of fuel assembly (FA) rearrangement algorithm. The proba...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/111678 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup / S.N. Pelykh, M.V. Maksimov // Вопросы атомной науки и техники. — 2013. — № 2. — С. 50-54. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-111678 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1116782017-01-14T03:03:06Z Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup Pelykh, S.N. Maksimov, M.V. Физика радиационных повреждений и явлений в твердых телах Using the VVER-1000 fuel element (FE) cladding failure estimation method based on creep energy theory (CET-method), it is shown that practically FE cladding rupture life at normal operation conditions can be controlled by an optimal assignment of fuel assembly (FA) rearrangement algorithm. The probabilistic FA rearrangement efficiency criterion based on Monte Carlo Sampling takes into account robust operation conditions and gives results corresponding to the deterministic ones in principle, though the robust efficiency estimation is more conservative. It is proved that CET-method allows us to create an automated complex controlling FE cladding durability in VVER-1000. Використовуючи метод розрахунку пошкодження оболонки твела ВВЕР-1000, заснований на енергетичному варiантi теорiї повзучостi, викладено, що шляхом оптимального вибору алгоритму переставлень ТВЗ можливо управляти довговічністю оболонок твелiв за нормальних умов експлуатації. Iмовiрнiсний критерій ефективності переставлень ТВЗ, заснований за методом вибірок Монте-Карло, враховує робастні умови експлуатації оболонок твелiв i дає результати, якi вiдповiдають у цiлому результатам детерміністичного аналiзу, хоча робастна оцінка ефективності є бiльш консервативною. Доведено, що ЕВТП-метод дозволяє створити автоматизований комплекс управління довговічністю оболонок твелiв ВВЕР-1000. Используя метод расчета поврежденности оболочки твэла ВВЭР-1000, основанный на энергетическом варианте теории ползучести (ЭВТП-метод), показано, что путем оптимального выбора алгоритма перестановок ТВС возможно управлять долговечностью оболочек твэлов в нормальных условиях эксплуатации. Вероятностный критерий эффективности перестановок ТВС, основанный на методе выборок Монте-Карло, учитывает робастные условия эксплуатации оболочек твэлов и дает результаты, соответствующие в основном результатам детерминистического анализа, хотя робастная оценка эффективности более консервативна. Показано, что ЭВТП-метод позволяет создать автоматизированный комплекс управления долговечностью оболочек твэлов ВВЭР-1000. 2013 Article Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup / S.N. Pelykh, M.V. Maksimov // Вопросы атомной науки и техники. — 2013. — № 2. — С. 50-54. — Бібліогр.: 11 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/111678 621.039.548 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Физика радиационных повреждений и явлений в твердых телах Физика радиационных повреждений и явлений в твердых телах |
spellingShingle |
Физика радиационных повреждений и явлений в твердых телах Физика радиационных повреждений и явлений в твердых телах Pelykh, S.N. Maksimov, M.V. Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup Вопросы атомной науки и техники |
description |
Using the VVER-1000 fuel element (FE) cladding failure estimation method based on creep energy theory (CET-method), it is shown that practically FE cladding rupture life at normal operation conditions can be controlled by an optimal assignment of fuel assembly (FA) rearrangement algorithm. The probabilistic FA rearrangement efficiency criterion based on Monte Carlo Sampling takes into account robust operation conditions and gives results corresponding to the deterministic ones in principle, though the robust efficiency estimation is more conservative. It is proved that CET-method allows us to create an automated complex controlling FE cladding durability in VVER-1000. |
format |
Article |
author |
Pelykh, S.N. Maksimov, M.V. |
author_facet |
Pelykh, S.N. Maksimov, M.V. |
author_sort |
Pelykh, S.N. |
title |
Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup |
title_short |
Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup |
title_full |
Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup |
title_fullStr |
Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup |
title_full_unstemmed |
Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup |
title_sort |
theory of vver-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2013 |
topic_facet |
Физика радиационных повреждений и явлений в твердых телах |
url |
http://dspace.nbuv.gov.ua/handle/123456789/111678 |
citation_txt |
Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup / S.N. Pelykh, M.V. Maksimov // Вопросы атомной науки и техники. — 2013. — № 2. — С. 50-54. — Бібліогр.: 11 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT pelykhsn theoryofvver1000fuelrearrangementoptimizationtakingintoaccountbothfuelcladdingdurabilityandburnup AT maksimovmv theoryofvver1000fuelrearrangementoptimizationtakingintoaccountbothfuelcladdingdurabilityandburnup |
first_indexed |
2025-07-08T02:31:45Z |
last_indexed |
2025-07-08T02:31:45Z |
_version_ |
1837044235855986688 |
fulltext |
50 ISSN 1562-6016. ВАНТ. 2013. №2(84)
UDС 621.039.548
THEORY OF VVER-1000 FUEL REARRANGEMENT OPTIMIZATION
TAKING INTO ACCOUNT BOTH FUEL CLADDING DURABILITY
AND BURNUP
S.N. Pelykh, M.V. Maksimov
Odessa National Polytechnic University, Odessa, Ukraine
E-mail: 1@pelykh.net; tel. +38(066)187-21-45
Using the VVER-1000 fuel element (FE) cladding failure estimation method based on creep energy theory
(CET-method), it is shown that practically FE cladding rupture life at normal operation conditions can be controlled
by an optimal assignment of fuel assembly (FA) rearrangement algorithm. The probabilistic FA rearrangement
efficiency criterion based on Monte Carlo Sampling takes into account robust operation conditions and gives results
corresponding to the deterministic ones in principle, though the robust efficiency estimation is more conservative. It
is proved that CET-method allows us to create an automated complex controlling FE cladding durability in
VVER-1000.
INTRODUCTION
Recently the problem of fuel cladding life control at
nuclear power plants (NPP) with VVER-1000 reactors
has become actual in Ukraine [1]. This problem consists
of several subproblems: creating a physically based
method of VVER-1000 fuel cladding failure estimation;
determination of main factors influencing VVER-1000
fuel cladding life; working out methods to optimize
main factors influencing VVER-1000 fuel cladding life.
To predict likelihood of VVER-1000 fuel cladding
failure accurately, it is necessary to use a relevant
physical model of the fuel cladding failure process
during cyclic pressurization. When loading frequency is
below 1 Hz, creep governs the entire deformation
process in zircaloy-4 cladding [2]. According to creep
energy theory (CET), energy spent for FE cladding
material destruction is called as specific dispersion
energy (SDE) [3].
For the first time, a method of analysis of
VVER-1000 FE cladding running time at variable
loading based on CET (CET-method) was proposed in
[4]. The main features of CET-method are: creep is the
main mechanism of cladding deformation when
VVER-1000 is operated at variable loading; creep and
destruction processes proceed in common and influence
against each other; at any moment intensity of failure is
estimated by SDE accumulated during creep process by
this moment; cladding failure criterion components do
not depend on VVER-1000 loading conditions, power
maneuvering methods, dispositions of regulating units,
FA rearrangement algorithms, etc. The VVER-1000
cladding corrosion rate is determined by design
constraints for cladding and coolant, and depends
slightly on a regime of variable loading. At the same
time, practically FE maximum LHR is determined not
only by current reactor capacity level, which is a value
given to a NPP by the integrated power system, but also
by FA rearrangement algorithm. Therefore, the FE
cladding rupture life at normal variable loading
operation conditions can be controlled by an optimal
assignment of FA rearrangement algorithm [5].
THE APPROACH TO OPTIMIZE
REARRANGEMENTS IN VVER-1000
Optimization of FA rearrangements is undertaken
for a core segment containing 1/6 of all the FAs, as well
as 1/6 of all the regulating units used for power
maneuvering. Disposition of the 10th regulating group
in case of A-algorithm [1] and the analysed core
segment are shown in Fig. 1.
Fig. 1. Disposition of the 10th group: (figure) FA cell
number (360 symmetry). The 10-th group cells and the
analysed core segment (1/6) borders are in bold
The amplitude of relative linear heat rate (LHR)
jumps at FE axial segments (ASs) occurring when the
reactor thermal capacity N increases at power
maneuvering, was estimated using the “Reactor
Simulator” (RS) code [6]. According to the distribution
of long-lived and stable fission products specified for
the start of the 5th four-year campaign of KhNPP Unit
2, distribution of FAs in the core segment by campaign
year is given in the input data file for the RS code.
Having used RS, to establish conditions at the start of
the 5th campaign, it was found that there are 7 FAs of
each campaign year in the specified core segment.
Hence, it can be assumed that at the beginning of each
campaign year FAs are placed according to the
distribution shown in Fig. 2.
ISSN 1562-6016. ВАНТ. 2013. №2(84) 51
Fig. 2. Transpositions of FAs: (number) FA cell
number; (roman numerals I, II, III and IV) 1st, 2nd, 3rd
and 4th campaign year, respectively (6
cells for the 4th
year FAs)
Nowadays two main approaches are
used at NPP
with VVER-1000 [7]: 1) a 4th year FA is
placed in the
central core cell 82, and 7 core cells are appointed for
FAs of each year; 2) a 1st
or a 2nd year FA is placed in
cell
82, and 7
core cells are appointed for FAs of each
year, with the exception of 4th year FAs which can be
placed in 6 core cells only. In this case cell 82 is not
considered when making optimization of FA
rearrangements. The last approach is used in practice
mainly, because it gives an optimal fuel utilization to
ensure the necessary campaign duration, so this
approach with 6 cells appointed for 4th year FAs will be
considered when making optimization of
rearrangements (see Fig. 2).
CALCULATION OF DAMAGE
IN THE FE CLADDING
The light water reactor (LWR) fuel analysis finite
element code FEMAXI [8] was used for determination
of the evolution of VVER-1000 cladding creep stresses
and strains under variable loading in a given power
history and coolant conditions. Sintered uranium
dioxide was assumed to be the pellet material, while
stress-relieved zircaloy-4 was assumed to be the
cladding material.
Cladding durability is estimated for the most
strained AS (№6), taking into account the disposition of
regulating units in the A-algorithm case, аs well as
considering the amplitude of regulating unit movement
necessary to stabilize axial offset at daily power
maneuvering with inT = const [5]. Changes in SDE
during the 4-year campaign (1460 calendar days) were
calculated using the MATPRO-A [9] corrosion model
by the following procedure: 1) Using RS, for the cells
shown in Fig. 2, calculation of relative power
coefficients k6, j in AS 6 at N=80 and 100 %; 2) Using
FEMAXI, calculation of stress-strain development in
FE cladding and fuel burnup; 3) Using CET-method and
A0 = 30 MJ/m3 (SDE at the moment of cladding material
failure beginning), calculation of
0/)d1460()d1460( AA=ω
and burnup B(1460 d) for
selected rearrangement algorithms.
Because of a great number of possible
variants,
when considering a new FA rearrangement algorithm, a
random choice of core cells using the MATLAB
function “rand” was adopted.
To illustrate the method, it
was adopted that 18=algN , that is 18 rearrangement
algorithms containing 126 different rearrangements
were analyzed, where 16 algorithms containing 112
rearrangements were randomly chosen, while two
algorithms were practically used at Zaporizhzhya NPP,
Unit 5 [7]. These two practical algorithms which were
used during campaigns 22 and 23 (algorithms 17 and
18, respectively) are shown in Table 1.
Таble 1
Cladding failure parameters and burnups for
algorithms 17 and 18
j Rearrangement A,
MJ/m3 %
),(τω B,
MW·d/kg
2-22-12-6 1.463 4.877 54.35
3-41-29 1.184 3.947 48.8
4-11-68-43 1.078 3.593 60.63
5-19-10-8 1.498 4.993 57.18
9-30-20-1 2.058 6.86 59.39
13-32-21-42 2.667 8.89 68.23
17
55-31-54-18 2.437 8.123 67.45
2-22-21-6 1.55 5.167 54.86
3-41-68 1.18 3.933 48.83
4-11-29-18 1.159 3.863 60.84
5-19-20-1 1.449 4.83 54.55
9-32-12-42 2.586 8.62 67.86
13-30-10-43 2.551 8.503 67.73
18
55-31-54-8 1.982 6.607 61.37
THE CRITERION OF
REARRANGEMENT EFFICIENCY
Considering all the FAs used in rearrangement
algorithm j, let’s suppose that
max
jω
is the maximum
value of cladding failure parameter, j>< ω is the
average value of cladding failure parameter; min
jB is
the minimum value of fuel burnup. Let’s introduce
{ }maxopt min jωω = ; { }j><=>< ωω minopt ;
{ }minopt max jBB = .
(1)
Let’s accept that
limω , lim>< ω and limB
are
specified permissible limits for max
jω , j>< ω and min
jB ,
respectively. Hence, the permissible values of
,max
jω andj>< ω min
jB lie in the following ranges:
limmaxopt ≤≤ ωωω j ;
limopt ≤≤ ><><>< ωωω j ; (2)
optminlim BBB j ≤≤ .
Then we obtain
1≤≤ max,*lim,*
jωω ; 1≤≤ *lim,*
j><>< ωω ;
1≤≤ min,*lim,*
jBB , (3)
where
);-1/()-(1 optlimlim,* ωωω ≡
);-1/()-1( optmaxmax,* ωωω jj ≡
); -(1/)(1- optlimlim,* ><><≡>< ωωω
;) -(1/)(1- opt* ><><≡>< ωωω jj
(4)
52 ISSN 1562-6016. ВАНТ. 2013. №2(84)
;/ optlimlim,* BBB ≡ ./ optminmin,* BBB jj ≡
As 1;becan1; lim,*lim,* ω>>B , from the condition
of equal importance of nuclear safety and economy
requirements:
lim,*lim,*lim,* B=><= ωω . (5)
Hence having some value of ωlim, the
corresponding
values of
lim><ω and limB are defined
from the
following equations
);-1/() -1)(-(1-1 optoptlimlim ωωωω ><=><
).-1/()-(1 optoptlimlim ωω BB = (6)
To compare efficiency Eff of different FA
rearrangement algorithms, the FA rearrangement
algorithm efficiency criterion is proposed:
,/-1 limLLEff jj =
(7)
where
( ) ( ) ( ) ,-1-1-1
2min,*2*2max,*
jjjj BL +><+= ωω
(8)
( ) ( ) ( ) .-1-1-1
2lim,*2lim,*2lim,*lim BL +><+= ωω
(9)
Using Eqs. (4), (5) and (9)
).-1/(-3-13 optoptlimlim,*lim ωωωω ==L
(10)
The physical meaning of criterion (7) is: 1) if any of
the dimensionless components ,( max,*
jω *
j>< ω
or
)min,*
jB lies out
of the permissible range ]1;[ lim,*ω , then
this component gives a negative contribution to the
total
efficiency defined by Eq. (7); 2) advantage of
some algorithm over another is determined on the basis
of summation of advantages given by the dimensionless
components; 3) weight factors can be used in Eq. (5) to
give priority to some component.
Using criterion (7) and setting ,%13lim =ω Eff was
calculated for 18 algorithms. Algorithm 2 having the
worst Eff , the first five algorithms (3, 4, 6, 8, 14)
having the greatest values of Eff , as well as the practical
algorithms (17 and 18) are shown in Table 2.
Table 2
Algorithm efficiency
j max
jω , % j>< ω , % ,min
jB
MWd/kg
jEff
2 8.84 5.861 47.61 -0.1442
3 7.51 5.865 54.67 0.9372
4 6.87 5.796 54.05 0.9008
6 6.847 5.787 53.05 0.741
8 7.017 5.771 54.27 0.9341
14 8.247 5.864 54.07 0.8371
17 8.89 5.898 48.8 0.0420
18 8.62 5.932 48.83 0.0515
It can be seen: 1)
algorithms
3 and 8 are
characterizied by both high cladding durability and high
burnup, hence all the corresponding dimensionless
criterion components are high, so Eff3 and Eff8 are
highest; 2) algorithms
17 and 18 have both cladding
durability and burnup worse than the ones of algorithms
3 and 8, so Eff17 and Eff18 are close to 0; 3) algorithm
2
is characterizied by cladding durability close to the
same for algorithms
17 and 18, but burnup is
considerably lower than the same for these algorithms,
and as a result Eff2 < 0.
THE ROBUST MODEL
Let us suppose that the calculated maximum LHR in
FA j max,, jlq is the mean of some random variable
rand
max,, jlq :
.rand
max,,max,, ><≡ jljl qq
(11)
To take into account VVER-1000 robust operating
conditions when making the
probabilistic
analysis,
cladding damage parameter and burnup in the most
strained AS are calculated for rearrangements of the
best algorithms 3,
4, 6, 8
and 14 at
%10and%10 rand
max,,
rand
max,, +><−>< cnlcnl qq , where cn is
core cell number for the corresponding
campaign year,
e.g., for algorithm 3 and
rearrangement 9-19-21-8:
cn = 9, 19, 21 and 8 for 1st,
2nd, 3rd and 4th year,
respectively. Hence,
use of deterministiс criterion (7)
allows us to reduce
algN from 18=algN to .5=algN
The efficiency of rearrangement algorithm j is
calculated using Eq (7) and there are 2 random variables
( rand
,kjω
and rand
,kjB
) for each pair of algorithm j and
rearrangement k; =max
jω max{ rand
,kjω }, j>< ω =
= <{ rand
,kjω }>, min
jB = min{ rand
,kjB }, where
;,...,1 algNj = .7,...,1=k Hence, we have the total
number of input random variables 7072 =⋅⋅ algN , that
is 35 rearrangements are described by 70 random
variables.
For 7,...,1=k and j = 3, 4, 6, 8, 14, using three
sigma rule (assuming normal distribution), the
corresponding means >< rand
,kjω , >< rand
,kjB and
standard deviations )( rand
,kjωσ , )( rand
,kjBσ of random
variables rand
,kjω , rand
,kjB are calculated. For instance,
algorithm 3 − (9-19-21-8 + 5-41-68-43 + 55-22-10 +
13-11-20-6 + 3-30-54-1+ 4-32-18-42 + 2-31-12-29) − is
described by the following random values kpj ,,τ , where
p=1 denotes rand
,kjω
and p=2 denotes rand
,kjB :
;...; rand
29-12-31-27,1,3
rand
8-21-19-91,1,3 ωτωτ ≡≡
;rand
8-21-19-91,2,3 B≡τ .... rand
29-12-31-27,2,3 B≡τ
Hence, for rearrangement 9-19-21-8 of algorithm 3,
1,1,3τ
and
1,2,3τ
are random values described by
{ >< rand
1,3ω , )( rand
1,3ωσ } and { >< rand
1,3B , )( rand
1,3Bσ },
respectively.
As we have 70 random variables, non-intrusive
polynomial chaos (NIPC) methods [10] are not
computationally attractive in comparison with Monte
Carlo Sampling (MCS) methods. To use the MCS
ISSN 1562-6016. ВАНТ. 2013. №2(84) 53
method, a set of normally distributed random variables
kpj ,,τ is obtained substituting the means and standard
deviations of rand
,kjω and rand
,kjB into the MATLAB
function “normrnd”, and the efficiency of algorithm j
is
found using
Eq. (7) in the form:
( )1,2,2,1,1,1, ,, jjjj fEff θθθ= , (12)
{ }
{ } { }.,...,min;,...,
;,...,max;,...,1where
7,2,1,2,1,2,7,1,1,1,2,1,
7,1,1,1,1,1,
jjjjjj
jjjalgNj
ττθττθ
ττθ
=><=
==
OPTIMIZATION OF REARRANGEMENTS
Thus, the efficiency of algorithm j is calculated
using Eq. (12). For the case of uncertain conditions,
limoptoptopt and,, LB>< ωω can not be set as for the
deterministic case (Table 3).
It should be noted that if
algN increases, then optω
decreases. On the contrary, when the
number of core
cells used for optimization increases, ωopt increases also.
The trade-off between the mean value of jEff and
its standard deviation, as estimated using MCS, for the
best five FA transposition algorithms, as well as for the
simplest robust optimization of FA rearrangements
taking into account only two core cells appointed for
each year, is shown in Fig. 3.
Table 3
Difference between the deterministic
and robust cases
Deterministic
case Robust case
%13lim =ω
optω = 6.847;
opt>< ω = 5.771;
optB = 54.67;
;12.0lim=>< ω
;06.51lim =B
;1144.0lim =L
9339.0lim,* =ω
MCS optω opt>< ω optB
1 8.121 6.793 55.23
10 10.67 7.934 55.69
100 9.950 7.449 53.83
lim lim lim lim,*, , ,
are variable on MCS
B Lω ω< >
Fig. 3. Mean efficiency and standard deviation for
ωlim=13 % in the robust case: (number) algorithm
number for optimization with 7 cells per year
(excluding year 4), A0=30 MJ/m3; (pentagon)
random algorithm for optimization with 2 cells per
year, A0=40 MJ/m3
Algorithm 3 had the largest efficiency in the
deterministic case, while in the robust case algorithm
8 is most efficient (see Fig. 3). This can be explained by
the fact that %5.7max
3 ≈ω , while %.7max
8 ≈ω
As
dependence of SDE on LHR is nonlinear and SDE
depends greatly on FA rearrangement history, in the
robust case this difference %5.0max
8
max
3 =− ωω turned
to be sufficient to obtain a greater mean efficiency for
algorithm 8 in comparison with algorithm 3. In addition,
algorithm 3 has a greater standard deviation than
algorithm 8, and thus there is no trade-off between these
two options. Both algorithms dominate all the other
options, having both higher mean efficiencies and
smaller standard deviations.
CONCLUSIONS
1. The deterministic FA rearrangement efficiency
criterion taking into account both safety (cladding
durability) and economic (burnup) factors allows us to
improve existing methods of fuel rearrangement
optimization which take into account only economic
efficiency estimated in terms of fuel burnup, power
form factor, etc., as well as pin failure probability for a
hypothetical severe depressurization accident [11].
2. The probabilistic FA rearrangement efficiency
criterion based on Monte Carlo Sampling takes into
account robust operation conditions and gives results
corresponding to the determinisic ones in principle,
though the robust efficiency estimation is more
conservative. Hence deterministic FA rearrangement
optimization can be used as a preliminary procedure to
decrease the number of analysed rearrangement
algorithms.
3. CET-method allows us to improve existing
control and protection equipment by creating an
automated program-technical complex making control
of FE cladding durability and optimization of fuel
rearrangements in VVER-1000.
REFERENCES
1. S.N. Pelykh, M.V. Maksimov. Cladding rupture
life control methods for a power-cycling WWER-1000
nuclear unit // Nuclear Engineering and Design (241).
2011, №8, p. 2956-2963.
2. J.H. Kim, M.H. Lee, B.K. Choi, Y.H. Jeong.
Deformation behavior of Zircaloy-4 cladding under
cyclic pressurization // Journal of Nuclear Science and
Technology. 2007, №44, p. 1275-1280.
3. O.B. Соснин, Б.В. Горев, A.Ф. Никитенко.
Энергетический вариант теории ползучести.
Новосибирск: «СО Академии наук СССР», 1986,
94 с.
4. S.N. Pelykh, M.V. Maksimov, V.E. Baskakov.
Model of cladding failure estimation under multiple
cyclic reactor power changes // Proc. of the 2nd
International Conference on Current Problems of
Nuclear Physics and Atomic Energy. Kyiv: KINR,
2008, p. 638-641.
5. S.N. Pelykh, M.V. Maksimov. Nuclear reactors.
Rijeka: “InTech”, 2012, p. 197-230.
6. П.Е. Филимонов, В.В. Мамичев, С.П. Аверь-
янова. Программа «Имитатор реактора» для
54 ISSN 1562-6016. ВАНТ. 2013. №2(84)
моделирования маневренных режимов работы
ВВЭР-1000 // Атомная энергия. 1998, №6, в. 84,
с. 560-563.
7. Р.Ю. Воробьев. Aльбoмы нeйтpoннo-
физичecкиx xapaктepиcтик aктивнoй зoны
peaктopa энepгoблoкa №5 ЗAЭC, кaмпaнии 20-23.
Энергодар: «Запорожская АЭС», 2008-2011, 323 с.
8. M. Suzuki. Light water reactor fuel analysis
code FEMAXI-V (Ver.1). Tokai: “Japan atomic energy
research institute”, 2000, 285 p.
9. М. Сузуки. Моделирование поведения твэла
легководного реактора в различных режимах
нагружения. Одесса: «Астропринт», 2010, 248 с.
10. T. Ghisu, G.T. Parks, J.P. Jarrett, P.J. Clarkson.
Adaptive polynomial chaos for gas turbine compression
systems performance analysis // AIAA Journal. 2010,
№6, p. 1156-1170.
11. G.T. Parks. An intelligent stochastic
optimization routine for nuclear fuel cycle design //
Nuclear Technology. 1990, №2, p. 233-246.
Cтатья поступила в редакцию 07.09.2012 г.
ТЕОРИЯ ОПТИМИЗАЦИИ ПЕРЕСТАНОВОК ТВС ВВЭР-1000 C УЧЕТОМ
ДОЛГОВЕЧНОСТИ ОБОЛОЧЕК ТВЭЛОВ И ГЛУБИНЫ ВЫГОРАНИЯ ТОПЛИВА
С.Н. Пелых, М.В. Максимов
Используя метод расчета поврежденности оболочки твэла ВВЭР-1000, основанный на энергетическом
варианте теории ползучести (ЭВТП-метод), показано, что путем оптимального выбора алгоритма
перестановок ТВС возможно управлять долговечностью оболочек твэлов в нормальных условиях
эксплуатации. Вероятностный критерий эффективности перестановок ТВС, основанный на методе выборок
Монте-Карло, учитывает робастные условия эксплуатации оболочек твэлов и дает результаты,
соответствующие в основном результатам детерминистического анализа, хотя робастная оценка
эффективности более консервативна. Показано, что ЭВТП-метод позволяет создать автоматизированный
комплекс управления долговечностью оболочек твэлов ВВЭР-1000.
ТЕОРIЯ ОПТИМІЗАЦІЇ ПЕРЕСТАВЛЕНЬ ТВЗ ВВЕР-1000 ВРАХОВУЮЧИ
НА ДОВГОВІЧНІСТЬ ОБОЛОНОК ТВЕЛIВ ТА ГЛИБИНУ ВИГОРАННЯ ПАЛИВА
С.М. Пелих, М.В. Максимов
Використовуючи метод розрахунку пошкодження оболонки твела ВВЕР-1000, заснований на
енергетичному варiантi теорiї повзучостi, викладено, що шляхом оптимального вибору алгоритму
переставлень ТВЗ можливо управляти довговічністю оболонок твелiв за нормальних умов експлуатації.
Iмовiрнiсний критерій ефективності переставлень ТВЗ, заснований за методом вибірок Монте-Карло,
враховує робастні умови експлуатації оболонок твелiв i дає результати, якi вiдповiдають у цiлому
результатам детерміністичного аналiзу, хоча робастна оцінка ефективності є бiльш консервативною.
Доведено, що ЕВТП-метод дозволяє створити автоматизований комплекс управління довговічністю
оболонок твелiв ВВЕР-1000.
|