Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup

Using the VVER-1000 fuel element (FE) cladding failure estimation method based on creep energy theory (CET-method), it is shown that practically FE cladding rupture life at normal operation conditions can be controlled by an optimal assignment of fuel assembly (FA) rearrangement algorithm. The proba...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Pelykh, S.N., Maksimov, M.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/111678
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup / S.N. Pelykh, M.V. Maksimov // Вопросы атомной науки и техники. — 2013. — № 2. — С. 50-54. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-111678
record_format dspace
spelling irk-123456789-1116782017-01-14T03:03:06Z Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup Pelykh, S.N. Maksimov, M.V. Физика радиационных повреждений и явлений в твердых телах Using the VVER-1000 fuel element (FE) cladding failure estimation method based on creep energy theory (CET-method), it is shown that practically FE cladding rupture life at normal operation conditions can be controlled by an optimal assignment of fuel assembly (FA) rearrangement algorithm. The probabilistic FA rearrangement efficiency criterion based on Monte Carlo Sampling takes into account robust operation conditions and gives results corresponding to the deterministic ones in principle, though the robust efficiency estimation is more conservative. It is proved that CET-method allows us to create an automated complex controlling FE cladding durability in VVER-1000. Використовуючи метод розрахунку пошкодження оболонки твела ВВЕР-1000, заснований на енергетичному варiантi теорiї повзучостi, викладено, що шляхом оптимального вибору алгоритму переставлень ТВЗ можливо управляти довговічністю оболонок твелiв за нормальних умов експлуатації. Iмовiрнiсний критерій ефективності переставлень ТВЗ, заснований за методом вибірок Монте-Карло, враховує робастні умови експлуатації оболонок твелiв i дає результати, якi вiдповiдають у цiлому результатам детерміністичного аналiзу, хоча робастна оцінка ефективності є бiльш консервативною. Доведено, що ЕВТП-метод дозволяє створити автоматизований комплекс управління довговічністю оболонок твелiв ВВЕР-1000. Используя метод расчета поврежденности оболочки твэла ВВЭР-1000, основанный на энергетическом варианте теории ползучести (ЭВТП-метод), показано, что путем оптимального выбора алгоритма перестановок ТВС возможно управлять долговечностью оболочек твэлов в нормальных условиях эксплуатации. Вероятностный критерий эффективности перестановок ТВС, основанный на методе выборок Монте-Карло, учитывает робастные условия эксплуатации оболочек твэлов и дает результаты, соответствующие в основном результатам детерминистического анализа, хотя робастная оценка эффективности более консервативна. Показано, что ЭВТП-метод позволяет создать автоматизированный комплекс управления долговечностью оболочек твэлов ВВЭР-1000. 2013 Article Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup / S.N. Pelykh, M.V. Maksimov // Вопросы атомной науки и техники. — 2013. — № 2. — С. 50-54. — Бібліогр.: 11 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/111678 621.039.548 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Физика радиационных повреждений и явлений в твердых телах
Физика радиационных повреждений и явлений в твердых телах
spellingShingle Физика радиационных повреждений и явлений в твердых телах
Физика радиационных повреждений и явлений в твердых телах
Pelykh, S.N.
Maksimov, M.V.
Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup
Вопросы атомной науки и техники
description Using the VVER-1000 fuel element (FE) cladding failure estimation method based on creep energy theory (CET-method), it is shown that practically FE cladding rupture life at normal operation conditions can be controlled by an optimal assignment of fuel assembly (FA) rearrangement algorithm. The probabilistic FA rearrangement efficiency criterion based on Monte Carlo Sampling takes into account robust operation conditions and gives results corresponding to the deterministic ones in principle, though the robust efficiency estimation is more conservative. It is proved that CET-method allows us to create an automated complex controlling FE cladding durability in VVER-1000.
format Article
author Pelykh, S.N.
Maksimov, M.V.
author_facet Pelykh, S.N.
Maksimov, M.V.
author_sort Pelykh, S.N.
title Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup
title_short Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup
title_full Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup
title_fullStr Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup
title_full_unstemmed Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup
title_sort theory of vver-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet Физика радиационных повреждений и явлений в твердых телах
url http://dspace.nbuv.gov.ua/handle/123456789/111678
citation_txt Theory of VVER-1000 fuel rearrangement optimization taking into account both fuel cladding durability and burnup / S.N. Pelykh, M.V. Maksimov // Вопросы атомной науки и техники. — 2013. — № 2. — С. 50-54. — Бібліогр.: 11 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT pelykhsn theoryofvver1000fuelrearrangementoptimizationtakingintoaccountbothfuelcladdingdurabilityandburnup
AT maksimovmv theoryofvver1000fuelrearrangementoptimizationtakingintoaccountbothfuelcladdingdurabilityandburnup
first_indexed 2025-07-08T02:31:45Z
last_indexed 2025-07-08T02:31:45Z
_version_ 1837044235855986688
fulltext 50 ISSN 1562-6016. ВАНТ. 2013. №2(84) UDС 621.039.548 THEORY OF VVER-1000 FUEL REARRANGEMENT OPTIMIZATION TAKING INTO ACCOUNT BOTH FUEL CLADDING DURABILITY AND BURNUP S.N. Pelykh, M.V. Maksimov Odessa National Polytechnic University, Odessa, Ukraine E-mail: 1@pelykh.net; tel. +38(066)187-21-45 Using the VVER-1000 fuel element (FE) cladding failure estimation method based on creep energy theory (CET-method), it is shown that practically FE cladding rupture life at normal operation conditions can be controlled by an optimal assignment of fuel assembly (FA) rearrangement algorithm. The probabilistic FA rearrangement efficiency criterion based on Monte Carlo Sampling takes into account robust operation conditions and gives results corresponding to the deterministic ones in principle, though the robust efficiency estimation is more conservative. It is proved that CET-method allows us to create an automated complex controlling FE cladding durability in VVER-1000. INTRODUCTION Recently the problem of fuel cladding life control at nuclear power plants (NPP) with VVER-1000 reactors has become actual in Ukraine [1]. This problem consists of several subproblems: creating a physically based method of VVER-1000 fuel cladding failure estimation; determination of main factors influencing VVER-1000 fuel cladding life; working out methods to optimize main factors influencing VVER-1000 fuel cladding life. To predict likelihood of VVER-1000 fuel cladding failure accurately, it is necessary to use a relevant physical model of the fuel cladding failure process during cyclic pressurization. When loading frequency is below 1 Hz, creep governs the entire deformation process in zircaloy-4 cladding [2]. According to creep energy theory (CET), energy spent for FE cladding material destruction is called as specific dispersion energy (SDE) [3]. For the first time, a method of analysis of VVER-1000 FE cladding running time at variable loading based on CET (CET-method) was proposed in [4]. The main features of CET-method are: creep is the main mechanism of cladding deformation when VVER-1000 is operated at variable loading; creep and destruction processes proceed in common and influence against each other; at any moment intensity of failure is estimated by SDE accumulated during creep process by this moment; cladding failure criterion components do not depend on VVER-1000 loading conditions, power maneuvering methods, dispositions of regulating units, FA rearrangement algorithms, etc. The VVER-1000 cladding corrosion rate is determined by design constraints for cladding and coolant, and depends slightly on a regime of variable loading. At the same time, practically FE maximum LHR is determined not only by current reactor capacity level, which is a value given to a NPP by the integrated power system, but also by FA rearrangement algorithm. Therefore, the FE cladding rupture life at normal variable loading operation conditions can be controlled by an optimal assignment of FA rearrangement algorithm [5]. THE APPROACH TO OPTIMIZE REARRANGEMENTS IN VVER-1000 Optimization of FA rearrangements is undertaken for a core segment containing 1/6 of all the FAs, as well as 1/6 of all the regulating units used for power maneuvering. Disposition of the 10th regulating group in case of A-algorithm [1] and the analysed core segment are shown in Fig. 1. Fig. 1. Disposition of the 10th group: (figure) FA cell number (360 symmetry). The 10-th group cells and the analysed core segment (1/6) borders are in bold The amplitude of relative linear heat rate (LHR) jumps at FE axial segments (ASs) occurring when the reactor thermal capacity N increases at power maneuvering, was estimated using the “Reactor Simulator” (RS) code [6]. According to the distribution of long-lived and stable fission products specified for the start of the 5th four-year campaign of KhNPP Unit 2, distribution of FAs in the core segment by campaign year is given in the input data file for the RS code. Having used RS, to establish conditions at the start of the 5th campaign, it was found that there are 7 FAs of each campaign year in the specified core segment. Hence, it can be assumed that at the beginning of each campaign year FAs are placed according to the distribution shown in Fig. 2. ISSN 1562-6016. ВАНТ. 2013. №2(84) 51 Fig. 2. Transpositions of FAs: (number) FA cell number; (roman numerals I, II, III and IV) 1st, 2nd, 3rd and 4th campaign year, respectively (6 cells for the 4th year FAs) Nowadays two main approaches are used at NPP with VVER-1000 [7]: 1) a 4th year FA is placed in the central core cell 82, and 7 core cells are appointed for FAs of each year; 2) a 1st or a 2nd year FA is placed in cell 82, and 7 core cells are appointed for FAs of each year, with the exception of 4th year FAs which can be placed in 6 core cells only. In this case cell 82 is not considered when making optimization of FA rearrangements. The last approach is used in practice mainly, because it gives an optimal fuel utilization to ensure the necessary campaign duration, so this approach with 6 cells appointed for 4th year FAs will be considered when making optimization of rearrangements (see Fig. 2). CALCULATION OF DAMAGE IN THE FE CLADDING The light water reactor (LWR) fuel analysis finite element code FEMAXI [8] was used for determination of the evolution of VVER-1000 cladding creep stresses and strains under variable loading in a given power history and coolant conditions. Sintered uranium dioxide was assumed to be the pellet material, while stress-relieved zircaloy-4 was assumed to be the cladding material. Cladding durability is estimated for the most strained AS (№6), taking into account the disposition of regulating units in the A-algorithm case, аs well as considering the amplitude of regulating unit movement necessary to stabilize axial offset at daily power maneuvering with inT = const [5]. Changes in SDE during the 4-year campaign (1460 calendar days) were calculated using the MATPRO-A [9] corrosion model by the following procedure: 1) Using RS, for the cells shown in Fig. 2, calculation of relative power coefficients k6, j in AS 6 at N=80 and 100 %; 2) Using FEMAXI, calculation of stress-strain development in FE cladding and fuel burnup; 3) Using CET-method and A0 = 30 MJ/m3 (SDE at the moment of cladding material failure beginning), calculation of 0/)d1460()d1460( AA=ω and burnup B(1460 d) for selected rearrangement algorithms. Because of a great number of possible variants, when considering a new FA rearrangement algorithm, a random choice of core cells using the MATLAB function “rand” was adopted. To illustrate the method, it was adopted that 18=algN , that is 18 rearrangement algorithms containing 126 different rearrangements were analyzed, where 16 algorithms containing 112 rearrangements were randomly chosen, while two algorithms were practically used at Zaporizhzhya NPP, Unit 5 [7]. These two practical algorithms which were used during campaigns 22 and 23 (algorithms 17 and 18, respectively) are shown in Table 1. Таble 1 Cladding failure parameters and burnups for algorithms 17 and 18 j Rearrangement A, MJ/m3 % ),(τω B, MW·d/kg 2-22-12-6 1.463 4.877 54.35 3-41-29 1.184 3.947 48.8 4-11-68-43 1.078 3.593 60.63 5-19-10-8 1.498 4.993 57.18 9-30-20-1 2.058 6.86 59.39 13-32-21-42 2.667 8.89 68.23 17 55-31-54-18 2.437 8.123 67.45 2-22-21-6 1.55 5.167 54.86 3-41-68 1.18 3.933 48.83 4-11-29-18 1.159 3.863 60.84 5-19-20-1 1.449 4.83 54.55 9-32-12-42 2.586 8.62 67.86 13-30-10-43 2.551 8.503 67.73 18 55-31-54-8 1.982 6.607 61.37 THE CRITERION OF REARRANGEMENT EFFICIENCY Considering all the FAs used in rearrangement algorithm j, let’s suppose that max jω is the maximum value of cladding failure parameter, j>< ω is the average value of cladding failure parameter; min jB is the minimum value of fuel burnup. Let’s introduce { }maxopt min jωω = ; { }j><=>< ωω minopt ; { }minopt max jBB = . (1) Let’s accept that limω , lim>< ω and limB are specified permissible limits for max jω , j>< ω and min jB , respectively. Hence, the permissible values of ,max jω andj>< ω min jB lie in the following ranges: limmaxopt ≤≤ ωωω j ; limopt ≤≤ ><><>< ωωω j ; (2) optminlim BBB j ≤≤ . Then we obtain 1≤≤ max,*lim,* jωω ; 1≤≤ *lim,* j><>< ωω ; 1≤≤ min,*lim,* jBB , (3) where );-1/()-(1 optlimlim,* ωωω ≡ );-1/()-1( optmaxmax,* ωωω jj ≡ ); -(1/)(1- optlimlim,* ><><≡>< ωωω ;) -(1/)(1- opt* ><><≡>< ωωω jj (4) 52 ISSN 1562-6016. ВАНТ. 2013. №2(84) ;/ optlimlim,* BBB ≡ ./ optminmin,* BBB jj ≡ As 1;becan1; lim,*lim,* ω>>B , from the condition of equal importance of nuclear safety and economy requirements: lim,*lim,*lim,* B=><= ωω . (5) Hence having some value of ωlim, the corresponding values of lim><ω and limB are defined from the following equations );-1/() -1)(-(1-1 optoptlimlim ωωωω ><=>< ).-1/()-(1 optoptlimlim ωω BB = (6) To compare efficiency Eff of different FA rearrangement algorithms, the FA rearrangement algorithm efficiency criterion is proposed: ,/-1 limLLEff jj = (7) where ( ) ( ) ( ) ,-1-1-1 2min,*2*2max,* jjjj BL +><+= ωω (8) ( ) ( ) ( ) .-1-1-1 2lim,*2lim,*2lim,*lim BL +><+= ωω (9) Using Eqs. (4), (5) and (9) ).-1/(-3-13 optoptlimlim,*lim ωωωω ==L (10) The physical meaning of criterion (7) is: 1) if any of the dimensionless components ,( max,* jω * j>< ω or )min,* jB lies out of the permissible range ]1;[ lim,*ω , then this component gives a negative contribution to the total efficiency defined by Eq. (7); 2) advantage of some algorithm over another is determined on the basis of summation of advantages given by the dimensionless components; 3) weight factors can be used in Eq. (5) to give priority to some component. Using criterion (7) and setting ,%13lim =ω Eff was calculated for 18 algorithms. Algorithm 2 having the worst Eff , the first five algorithms (3, 4, 6, 8, 14) having the greatest values of Eff , as well as the practical algorithms (17 and 18) are shown in Table 2. Table 2 Algorithm efficiency j max jω , % j>< ω , % ,min jB MWd/kg jEff 2 8.84 5.861 47.61 -0.1442 3 7.51 5.865 54.67 0.9372 4 6.87 5.796 54.05 0.9008 6 6.847 5.787 53.05 0.741 8 7.017 5.771 54.27 0.9341 14 8.247 5.864 54.07 0.8371 17 8.89 5.898 48.8 0.0420 18 8.62 5.932 48.83 0.0515 It can be seen: 1) algorithms 3 and 8 are characterizied by both high cladding durability and high burnup, hence all the corresponding dimensionless criterion components are high, so Eff3 and Eff8 are highest; 2) algorithms 17 and 18 have both cladding durability and burnup worse than the ones of algorithms 3 and 8, so Eff17 and Eff18 are close to 0; 3) algorithm 2 is characterizied by cladding durability close to the same for algorithms 17 and 18, but burnup is considerably lower than the same for these algorithms, and as a result Eff2 < 0. THE ROBUST MODEL Let us suppose that the calculated maximum LHR in FA j max,, jlq is the mean of some random variable rand max,, jlq : .rand max,,max,, ><≡ jljl qq (11) To take into account VVER-1000 robust operating conditions when making the probabilistic analysis, cladding damage parameter and burnup in the most strained AS are calculated for rearrangements of the best algorithms 3, 4, 6, 8 and 14 at %10and%10 rand max,, rand max,, +><−>< cnlcnl qq , where cn is core cell number for the corresponding campaign year, e.g., for algorithm 3 and rearrangement 9-19-21-8: cn = 9, 19, 21 and 8 for 1st, 2nd, 3rd and 4th year, respectively. Hence, use of deterministiс criterion (7) allows us to reduce algN from 18=algN to .5=algN The efficiency of rearrangement algorithm j is calculated using Eq (7) and there are 2 random variables ( rand ,kjω and rand ,kjB ) for each pair of algorithm j and rearrangement k; =max jω max{ rand ,kjω }, j>< ω = = <{ rand ,kjω }>, min jB = min{ rand ,kjB }, where ;,...,1 algNj = .7,...,1=k Hence, we have the total number of input random variables 7072 =⋅⋅ algN , that is 35 rearrangements are described by 70 random variables. For 7,...,1=k and j = 3, 4, 6, 8, 14, using three sigma rule (assuming normal distribution), the corresponding means >< rand ,kjω , >< rand ,kjB and standard deviations )( rand ,kjωσ , )( rand ,kjBσ of random variables rand ,kjω , rand ,kjB are calculated. For instance, algorithm 3 − (9-19-21-8 + 5-41-68-43 + 55-22-10 + 13-11-20-6 + 3-30-54-1+ 4-32-18-42 + 2-31-12-29) − is described by the following random values kpj ,,τ , where p=1 denotes rand ,kjω and p=2 denotes rand ,kjB : ;...; rand 29-12-31-27,1,3 rand 8-21-19-91,1,3 ωτωτ ≡≡ ;rand 8-21-19-91,2,3 B≡τ .... rand 29-12-31-27,2,3 B≡τ Hence, for rearrangement 9-19-21-8 of algorithm 3, 1,1,3τ and 1,2,3τ are random values described by { >< rand 1,3ω , )( rand 1,3ωσ } and { >< rand 1,3B , )( rand 1,3Bσ }, respectively. As we have 70 random variables, non-intrusive polynomial chaos (NIPC) methods [10] are not computationally attractive in comparison with Monte Carlo Sampling (MCS) methods. To use the MCS ISSN 1562-6016. ВАНТ. 2013. №2(84) 53 method, a set of normally distributed random variables kpj ,,τ is obtained substituting the means and standard deviations of rand ,kjω and rand ,kjB into the MATLAB function “normrnd”, and the efficiency of algorithm j is found using Eq. (7) in the form: ( )1,2,2,1,1,1, ,, jjjj fEff θθθ= , (12) { } { } { }.,...,min;,..., ;,...,max;,...,1where 7,2,1,2,1,2,7,1,1,1,2,1, 7,1,1,1,1,1, jjjjjj jjjalgNj ττθττθ ττθ =><= == OPTIMIZATION OF REARRANGEMENTS Thus, the efficiency of algorithm j is calculated using Eq. (12). For the case of uncertain conditions, limoptoptopt and,, LB>< ωω can not be set as for the deterministic case (Table 3). It should be noted that if algN increases, then optω decreases. On the contrary, when the number of core cells used for optimization increases, ωopt increases also. The trade-off between the mean value of jEff and its standard deviation, as estimated using MCS, for the best five FA transposition algorithms, as well as for the simplest robust optimization of FA rearrangements taking into account only two core cells appointed for each year, is shown in Fig. 3. Table 3 Difference between the deterministic and robust cases Deterministic case Robust case %13lim =ω optω = 6.847; opt>< ω = 5.771; optB = 54.67; ;12.0lim=>< ω ;06.51lim =B ;1144.0lim =L 9339.0lim,* =ω MCS optω opt>< ω optB 1 8.121 6.793 55.23 10 10.67 7.934 55.69 100 9.950 7.449 53.83 lim lim lim lim,*, , , are variable on MCS B Lω ω< > Fig. 3. Mean efficiency and standard deviation for ωlim=13 % in the robust case: (number) algorithm number for optimization with 7 cells per year (excluding year 4), A0=30 MJ/m3; (pentagon) random algorithm for optimization with 2 cells per year, A0=40 MJ/m3 Algorithm 3 had the largest efficiency in the deterministic case, while in the robust case algorithm 8 is most efficient (see Fig. 3). This can be explained by the fact that %5.7max 3 ≈ω , while %.7max 8 ≈ω As dependence of SDE on LHR is nonlinear and SDE depends greatly on FA rearrangement history, in the robust case this difference %5.0max 8 max 3 =− ωω turned to be sufficient to obtain a greater mean efficiency for algorithm 8 in comparison with algorithm 3. In addition, algorithm 3 has a greater standard deviation than algorithm 8, and thus there is no trade-off between these two options. Both algorithms dominate all the other options, having both higher mean efficiencies and smaller standard deviations. CONCLUSIONS 1. The deterministic FA rearrangement efficiency criterion taking into account both safety (cladding durability) and economic (burnup) factors allows us to improve existing methods of fuel rearrangement optimization which take into account only economic efficiency estimated in terms of fuel burnup, power form factor, etc., as well as pin failure probability for a hypothetical severe depressurization accident [11]. 2. The probabilistic FA rearrangement efficiency criterion based on Monte Carlo Sampling takes into account robust operation conditions and gives results corresponding to the determinisic ones in principle, though the robust efficiency estimation is more conservative. Hence deterministic FA rearrangement optimization can be used as a preliminary procedure to decrease the number of analysed rearrangement algorithms. 3. CET-method allows us to improve existing control and protection equipment by creating an automated program-technical complex making control of FE cladding durability and optimization of fuel rearrangements in VVER-1000. REFERENCES 1. S.N. Pelykh, M.V. Maksimov. Cladding rupture life control methods for a power-cycling WWER-1000 nuclear unit // Nuclear Engineering and Design (241). 2011, №8, p. 2956-2963. 2. J.H. Kim, M.H. Lee, B.K. Choi, Y.H. Jeong. Deformation behavior of Zircaloy-4 cladding under cyclic pressurization // Journal of Nuclear Science and Technology. 2007, №44, p. 1275-1280. 3. O.B. Соснин, Б.В. Горев, A.Ф. Никитенко. Энергетический вариант теории ползучести. Новосибирск: «СО Академии наук СССР», 1986, 94 с. 4. S.N. Pelykh, M.V. Maksimov, V.E. Baskakov. Model of cladding failure estimation under multiple cyclic reactor power changes // Proc. of the 2nd International Conference on Current Problems of Nuclear Physics and Atomic Energy. Kyiv: KINR, 2008, p. 638-641. 5. S.N. Pelykh, M.V. Maksimov. Nuclear reactors. Rijeka: “InTech”, 2012, p. 197-230. 6. П.Е. Филимонов, В.В. Мамичев, С.П. Аверь- янова. Программа «Имитатор реактора» для 54 ISSN 1562-6016. ВАНТ. 2013. №2(84) моделирования маневренных режимов работы ВВЭР-1000 // Атомная энергия. 1998, №6, в. 84, с. 560-563. 7. Р.Ю. Воробьев. Aльбoмы нeйтpoннo- физичecкиx xapaктepиcтик aктивнoй зoны peaктopa энepгoблoкa №5 ЗAЭC, кaмпaнии 20-23. Энергодар: «Запорожская АЭС», 2008-2011, 323 с. 8. M. Suzuki. Light water reactor fuel analysis code FEMAXI-V (Ver.1). Tokai: “Japan atomic energy research institute”, 2000, 285 p. 9. М. Сузуки. Моделирование поведения твэла легководного реактора в различных режимах нагружения. Одесса: «Астропринт», 2010, 248 с. 10. T. Ghisu, G.T. Parks, J.P. Jarrett, P.J. Clarkson. Adaptive polynomial chaos for gas turbine compression systems performance analysis // AIAA Journal. 2010, №6, p. 1156-1170. 11. G.T. Parks. An intelligent stochastic optimization routine for nuclear fuel cycle design // Nuclear Technology. 1990, №2, p. 233-246. Cтатья поступила в редакцию 07.09.2012 г. ТЕОРИЯ ОПТИМИЗАЦИИ ПЕРЕСТАНОВОК ТВС ВВЭР-1000 C УЧЕТОМ ДОЛГОВЕЧНОСТИ ОБОЛОЧЕК ТВЭЛОВ И ГЛУБИНЫ ВЫГОРАНИЯ ТОПЛИВА С.Н. Пелых, М.В. Максимов Используя метод расчета поврежденности оболочки твэла ВВЭР-1000, основанный на энергетическом варианте теории ползучести (ЭВТП-метод), показано, что путем оптимального выбора алгоритма перестановок ТВС возможно управлять долговечностью оболочек твэлов в нормальных условиях эксплуатации. Вероятностный критерий эффективности перестановок ТВС, основанный на методе выборок Монте-Карло, учитывает робастные условия эксплуатации оболочек твэлов и дает результаты, соответствующие в основном результатам детерминистического анализа, хотя робастная оценка эффективности более консервативна. Показано, что ЭВТП-метод позволяет создать автоматизированный комплекс управления долговечностью оболочек твэлов ВВЭР-1000. ТЕОРIЯ ОПТИМІЗАЦІЇ ПЕРЕСТАВЛЕНЬ ТВЗ ВВЕР-1000 ВРАХОВУЮЧИ НА ДОВГОВІЧНІСТЬ ОБОЛОНОК ТВЕЛIВ ТА ГЛИБИНУ ВИГОРАННЯ ПАЛИВА С.М. Пелих, М.В. Максимов Використовуючи метод розрахунку пошкодження оболонки твела ВВЕР-1000, заснований на енергетичному варiантi теорiї повзучостi, викладено, що шляхом оптимального вибору алгоритму переставлень ТВЗ можливо управляти довговічністю оболонок твелiв за нормальних умов експлуатації. Iмовiрнiсний критерій ефективності переставлень ТВЗ, заснований за методом вибірок Монте-Карло, враховує робастні умови експлуатації оболонок твелiв i дає результати, якi вiдповiдають у цiлому результатам детерміністичного аналiзу, хоча робастна оцінка ефективності є бiльш консервативною. Доведено, що ЕВТП-метод дозволяє створити автоматизований комплекс управління довговічністю оболонок твелiв ВВЕР-1000.