Results of the first tests of the Sidra satellite-borne instrument breadboard model
In this work, the results of the calibration of the solid-state detectors and electronic channels of the SIDRA satelliteborne energetic charged particle spectrometer-telescope breadboard model are presented. The block schemes and experimental equipment used to conduct the thermal vacuum and electrom...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , , , , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/111895 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Results of the first tests of the Sidra satellite-borne instrument breadboard model / O.V. Dudnik, E.V. Kurbatov, A.M. Avilov, M. Prieto, S. Sanchez,A.V. Spassky, K.G. Titov, J. Sylwester, S. Gburek, P. Podg´orski // Вопросы атомной науки и техники. — 2013. — № 3. — С.297-302. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-111895 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1118952017-01-16T03:03:28Z Results of the first tests of the Sidra satellite-borne instrument breadboard model Dudnik, O.V. Kurbatov, E.V. Avilov, A.M. Prieto, M. Sanchez, S. Spassky, A.V. Titov, K.G. Sylwester, J. Gburek, S. Podg´orski, P. Вычислительные и модельные системы In this work, the results of the calibration of the solid-state detectors and electronic channels of the SIDRA satelliteborne energetic charged particle spectrometer-telescope breadboard model are presented. The block schemes and experimental equipment used to conduct the thermal vacuum and electromagnetic compatibility tests of the assemblies and modules of the compact satellite equipment are described. The results of the measured thermal conditions of operation of the signal analog and digital processing critical modules of the SIDRA instrument prototype are discussed. Finally, the levels of conducted interference generated by the instrument model in the primary vehicle-borne power circuits are presented. Представлено результати градуювання твердотiльних детекторiв i електронних каналiв лабораторного макету супутникового спектрометру-телескопу енергiйних заряджених частинок SIDRA. Описуються блок-схеми i експериментальне обладнання для здiйснення тепловакуумних випробувань вузлiв i модулiв компактної супутникової апаратури та для проведення випробувань наукових приладiв на електромагнiтну сумiснiсть. Обговорюються результати вимiряних теплових режимiв роботи критичних вузлiв модулiв аналогової i цифрової обробки сигналiв прототипу приладу SIDRA. Нарештi, представленi рiвнi кондуктивних завад, що створює макет приладу в ланцюгах первинного бортового живлення. Представлены результаты градуировки твердотельных детекторов и электронных каналов лабораторного макета спутникового спектрометра-телескопа знергичных заряженных частиц SIDRA. Описываются блок-схемы и экспериментальное оборудование для проведения тепловакуумных испытаний узлов и модулей компактной спутниковой аппаратуры и для осуществления испытаний научных приборов на электромагнитную совместимость. Обсуждаются результаты измеренных тепловых режимов работы критических узлов модулей аналоговой и цифровой обработок сигналов прототипа прибора SIDRA. Наконец, представлены уровни кондуктивных помех, создаваемых макетом прибора в цепях первичного бортового питания. 2013 Article Results of the first tests of the Sidra satellite-borne instrument breadboard model / O.V. Dudnik, E.V. Kurbatov, A.M. Avilov, M. Prieto, S. Sanchez,A.V. Spassky, K.G. Titov, J. Sylwester, S. Gburek, P. Podg´orski // Вопросы атомной науки и техники. — 2013. — № 3. — С.297-302. — Бібліогр.: 12 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/111895 PACS: 29.30.-h, 06.30.-k, 06.90.+v en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Вычислительные и модельные системы Вычислительные и модельные системы |
spellingShingle |
Вычислительные и модельные системы Вычислительные и модельные системы Dudnik, O.V. Kurbatov, E.V. Avilov, A.M. Prieto, M. Sanchez, S. Spassky, A.V. Titov, K.G. Sylwester, J. Gburek, S. Podg´orski, P. Results of the first tests of the Sidra satellite-borne instrument breadboard model Вопросы атомной науки и техники |
description |
In this work, the results of the calibration of the solid-state detectors and electronic channels of the SIDRA satelliteborne energetic charged particle spectrometer-telescope breadboard model are presented. The block schemes and experimental equipment used to conduct the thermal vacuum and electromagnetic compatibility tests of the assemblies and modules of the compact satellite equipment are described. The results of the measured thermal conditions of operation of the signal analog and digital processing critical modules of the SIDRA instrument prototype are discussed. Finally, the levels of conducted interference generated by the instrument model in the primary vehicle-borne power circuits are presented. |
format |
Article |
author |
Dudnik, O.V. Kurbatov, E.V. Avilov, A.M. Prieto, M. Sanchez, S. Spassky, A.V. Titov, K.G. Sylwester, J. Gburek, S. Podg´orski, P. |
author_facet |
Dudnik, O.V. Kurbatov, E.V. Avilov, A.M. Prieto, M. Sanchez, S. Spassky, A.V. Titov, K.G. Sylwester, J. Gburek, S. Podg´orski, P. |
author_sort |
Dudnik, O.V. |
title |
Results of the first tests of the Sidra satellite-borne instrument breadboard model |
title_short |
Results of the first tests of the Sidra satellite-borne instrument breadboard model |
title_full |
Results of the first tests of the Sidra satellite-borne instrument breadboard model |
title_fullStr |
Results of the first tests of the Sidra satellite-borne instrument breadboard model |
title_full_unstemmed |
Results of the first tests of the Sidra satellite-borne instrument breadboard model |
title_sort |
results of the first tests of the sidra satellite-borne instrument breadboard model |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2013 |
topic_facet |
Вычислительные и модельные системы |
url |
http://dspace.nbuv.gov.ua/handle/123456789/111895 |
citation_txt |
Results of the first tests of the Sidra satellite-borne instrument breadboard model / O.V. Dudnik, E.V. Kurbatov, A.M. Avilov, M. Prieto, S. Sanchez,A.V. Spassky, K.G. Titov, J. Sylwester, S. Gburek, P. Podg´orski // Вопросы атомной науки и техники. — 2013. — № 3. — С.297-302. — Бібліогр.: 12 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT dudnikov resultsofthefirsttestsofthesidrasatelliteborneinstrumentbreadboardmodel AT kurbatovev resultsofthefirsttestsofthesidrasatelliteborneinstrumentbreadboardmodel AT avilovam resultsofthefirsttestsofthesidrasatelliteborneinstrumentbreadboardmodel AT prietom resultsofthefirsttestsofthesidrasatelliteborneinstrumentbreadboardmodel AT sanchezs resultsofthefirsttestsofthesidrasatelliteborneinstrumentbreadboardmodel AT spasskyav resultsofthefirsttestsofthesidrasatelliteborneinstrumentbreadboardmodel AT titovkg resultsofthefirsttestsofthesidrasatelliteborneinstrumentbreadboardmodel AT sylwesterj resultsofthefirsttestsofthesidrasatelliteborneinstrumentbreadboardmodel AT gbureks resultsofthefirsttestsofthesidrasatelliteborneinstrumentbreadboardmodel AT podgorskip resultsofthefirsttestsofthesidrasatelliteborneinstrumentbreadboardmodel |
first_indexed |
2025-07-08T02:51:53Z |
last_indexed |
2025-07-08T02:51:53Z |
_version_ |
1837045502725586944 |
fulltext |
RESULTS OF THE FIRST TESTS OF THE SIDRA
SATELLITE-BORNE INSTRUMENT BREADBOARD MODEL
O.V. Dudnik1∗, E.V. Kurbatov1, A.M. Avilov1, M. Prieto2, S. Sanchez2,
A.V. Spassky3, K.G. Titov1, J. Sylwester4, S. Gburek4, P. Podgórski4
1V.N. Karazin Kharkov National University, Svobody Square, 4, 61022 Kharkov, Ukraine,
E-mail: Oleksiy.V.Dudnik@univer.kharkov.ua;
2Space Research Group, Alcala University, Alcala de Henares, Spain, E-mail: mpm@aut.uah.es;
3Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia,
E-mail: aspass@yandex.ru;
4Solar Physics Division, Space Research Center, Kopernika str., 11, 51-622, Wroclaw, Poland,
E-mail: js@cbk.pan.wroc.pl, sg@cbk.pan.wroc.pl, pp@cbk.pan.wroc.pl
(Received February 26, 2013)
In this work, the results of the calibration of the solid-state detectors and electronic channels of the SIDRA satellite-
borne energetic charged particle spectrometer-telescope breadboard model are presented. The block schemes and
experimental equipment used to conduct the thermal vacuum and electromagnetic compatibility tests of the assemblies
and modules of the compact satellite equipment are described. The results of the measured thermal conditions of
operation of the signal analog and digital processing critical modules of the SIDRA instrument prototype are discussed.
Finally, the levels of conducted interference generated by the instrument model in the primary vehicle-borne power
circuits are presented.
PACS: 29.30.-h, 06.30.-k, 06.90.+v
1. INTRODUCTION
Scientific equipment, engineered for space research
purposes, calls for thorough ground-based optimiza-
tion and development of several models, each of them
should undergo in specialized tests that emulate the
different flight operation phases [1]. Scientific instru-
ments accumulate data in the course of an experi-
ment under harsh conditions like high vacuum, tem-
perature variations in the range of operation, ioniz-
ing space radiation, as well as the close presence of
other scientific and service equipment. The above
factors have an effect on the equipment during its
live. The need to take the above-listed outer space
factors into account becomes still more urgent in
those cases where the equipment is engineered to ac-
complish interplanetary missions, including those to
study the Sun at a close distance [2-4]. In the lat-
ter case, thermal and radiation inputs received by
the scientific instrument are higher than those re-
ceived on scientific equipment on board space ve-
hicles in near-Earth orbit. Therefore, different in-
strument models shall be comprehensive tested [5]
under high-vacuum conditions and at different tem-
peratures on the instrument-mounting platform. To
reduce the tests costs, some adjustment and testing
operations are performed with the use of a common
model. In our case, the laboratory model of the
SIDRA (Space Instrument for Determination of RA-
diation environment) [6-10] compact satellite-borne
energetic charged particle spectrometer-telescope was
used for this purpose. The adjustments and tests per-
formed in the laboratory model of SIDRA include the
tuning of instrument electrical parameters, thermal
and vacuum testing, calibration of detectors with the
use of accelerated charged particles and radioactive
isotopes and finally the electromagnetic compatibil-
ity tests.
This paper presents the test results of the bread-
board model of the SIDRA compact instrument un-
der conditions of high vacuum and with variation
in temperatures from -34 to +500С. It also shows
the electromagnetic interference generated by the in-
strument model in the vehicle-borne primary power
circuits, as well as the results of the detectors cali-
bration with the use of electrons and heavy charged
particles.
2. CALIBRATION MEASUREMENTS
WITH ACCELERATED CHARGED
PARTICLES
The performance of the detectors and the analog sig-
nal processing unit was tested with isotope radioac-
tive sources and accelerated light nuclei in the cy-
∗Corresponding author E-mail address: Oleksiy.V.Dudnik@univer.kharkov.ua
ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2013, N3(85).
Series: Nuclear Physics Investigations (60), p.297-302.
297
clotron located at the D.V. Skobeltsyn Institute of
Nuclear Physics of M.V. Lomonosov Moscow State
University [11, 12]. The output signals of the sample
and hold circuits, analyzed with the spectrometric
12-bit analog-to-digital converter (ADC) 4К САЦП-
USB manufactured by the "Parsek"∗ Limited Liabil-
ity Company, were used in the experiments.
The radioactive sources used in the tests were
electrons (207Bi) and-alpha particles (226Ra). In
the cyclotron tests, accelerated beams of protons,
deuterons and α-particles with their energy levels be-
ing up to 7.5 MeV/nucleon were used. With the help
of calibrated aluminum plates of different thickness
at the detector inputs, similar particles with energy
Е=7.5...21 MeV were produced.
To extend the range of the linear part of recorded
particle energies, the gain coefficient of the input
test in the full absorption detector D2 was set to
Cg=3.8. Only one energy line, with the highest en-
ergy at Е=1048 keV, was used from among four en-
ergy lines of electrons of β-source 207Bi, this signal
that was recorded in the 32nd channel of the ADC.
In the course of the experiment involving the use of
α-particles the distance between source 226Ra and
detector was 4.02mm; with such a distance the en-
ergy losses in air are ∆E=543 keV. Hence, when plot-
ting the appropriate graph, the source energy values
Eα1=4782 keV, Eα2=5490 keV, Eα3=6002 keV, and
Eα4=7687 keV were reduced by the value of losses in
air.
Fig.1. Energy absorbed in D2 detector vs. analog
signal processing channel amplitude at the peak
detector output
From the obtained particle energy spectra, the values
of the ADC channel numbers that correspond to the
maximum values in the distributions of the number
of particles with different energies were found. The
ADC channel numbers were recalculated into ampli-
tudes of output signals of peak detectors (PD) UPD
and the results obtained were summarized in one plot.
Fig. 1 illustrates the dependence of full absorption en-
ergy in D2 detector vs. the amplitude of the analog
signal UPD at the output of the peak detector of the
relevant electronic processing channel. It can be seen
that the experimental values obtained from different
sources of accelerated charged particles can be lin-
early approximated with a good accuracy degree.
Thus, the proposed methods of combined calibra-
tion measurements, can be used to assess channel
sensitivity at a chosen gain coefficient. This is done
finding the maximum value of full absorption energy,
following the measurement of the dynamic range of
the peak detector operation with the help of a test
signal. In addition, the obtained relationship repre-
sents one of the sources of the initial data intended for
the development of the processing logics and software
for the Field-Programmable Gate Array (FPGA) of
the module for digital signals processing instrument
prototype.
3. THERMAL AND VACUUM
TESTING OF THE INSTRUMENT
To be able to simulate the temperature conditions
and to enable the operation of the instrument and
its separate modules in outer space, a special hot
bench as part of the stationary vacuum plant was
designed and manufactured. The hot bench consists
of a copper plate that mounts a serpentine copper
tube intended for cooling the bench with liquid ni-
trogen vapors, and a nichrome-wire heater made as a
spiral, which is arranged within quartz sleeves. The
copper tube and quartz sleeves are arranged within
the copper plate grooves so that the maximum heat
transfer rate can be provided. Such configuration also
provides for regular heating across the whole upper
service plane of the hot bench. The minimum tem-
perature gradient across the surface and thickness of
the bench is ensured thanks to a very good heating
contact between the serpentine copper tube, heater
and plate. In the lower part of the hot bench, and in
order to provide thermal isolation with the vacuum
chamber casing, four thermal 50 mm-high feet were
used.
To maintain the hot bench temperature over
the range of ±10С, a two-channel thermostat type
ТРМ-202 is provided. It is able to ensure the op-
eration in both heating and cooling modes. Heat is
mainly transferred from the bench to the telescope
parts to be tested due to their heat conductivity prop-
erties. The temperature of the instrument under test
is controlled in different controlled points with the use
of specially designed and calibrated chromel-alumel
thermocouples.
The thermal and vacuum tests of the SIDRA in-
strument breadboard model were carried out with a
pressure of Р=2...8×10−5 Torr. This value depends
on the rate of heating or cooling applied to the in-
strument. Vacuum condition was provided with the
use of a high-pressure vacuum part and magnetic-
discharge high-vacuum pump type НОРД-250.
The performance of the instrument model was
tested under the following conditions: 1) constant
temperature of the hot bench, maintained with the
∗http://www.parsek.ru
298
use of a cooling agent; 2) heating the hot bench up
to +500С; 3) slow cooling the hot bench down to
-340С.
Fig.2. Location of the thermocouple on the Xilinx
Spartan 3 XC3S1500 FGPA in the GR-XC3S-1500
board
Fig.3. Temperature distribution under high-vacuum
conditions, at constant hot bench temperature
Prior to start the tests, special temperature-sensing
elements were set in different points of the instru-
ment– calibrated thermocouples made of chromel-
alumel alloys: Т1 – on the hot bench surface; Т2 –
on the surface of Xilinx Spartan 3 XC3S1500 FGPA;
Т3 – on the surface of radiator DC-DC of secondary
power board converters; Т4 – close to the signal ana-
log processing module from the inner side of the in-
strument case. In Fig. 2, the setup of the tests and
how the thermocouple is fixed to the surface of the
Xilinx Spartan 3 XC3S1500 FGPA using a special
galvanized-iron shaped bracket, is shown.
During the initial stage a water coolant with a
controllable flow rate was used. The hot bench
temperature was maintained constant and equal to
Т≈210С during the 100-minute period of the exper-
iment. Fig. 3 illustrates the distribution of the tem-
perature values over the range of values indicated by
4 temperature-sensitive elements. 90...100 minutes
after the experiment began the FPGA surface tem-
perature reached ∼53◦С and underwent no further
practical changes. While the temperature on the
FPGA surface made ∼400С under laboratory and
atmospheric pressure conditions, the temperature in-
creased by ∆Т=130С under vacuum conditions, at
constant hot bench temperature and under condition
of no convection and external heat radiators.
During the second stage of the experiment the hot
bench was first heated up to +400С and was held in
this conditions for 140 minutes. From t≈40 minutes
on, almost a complete thermal stabilization occurred
(Fig. 4). The vacuum level reached ∼7×10−5 Torr.
Under those conditions the adhesive matter of the
printed circuit boards and cable network started to
outgassing. The temperature on the FPGA sur-
face attained the level of ∼660С. In Fig. 4 the hor-
izontal dashed-dot line denotes at Т=850С the up-
per temperature limit of the FPGA serviceability.
Next, at 160...220 minutes since the experiment was
started the hot bench temperature rose to the value
of +500С.
Fig.4. Temperature distribution under high-vacuum
conditions, with hot bench being heated up to +40
and +500С
The FPGA surface temperature attained the value
of +720С, while the remaining parts and modules of
the instrument almost reached the hot bench tem-
perature. At this final stage the difference between
the hot bench temperature, and FPGA surface was
∆Т=220С.
Fig. 5 presents the temperature pattern distribu-
tion when the hot bench was cooled with the use of
liquid nitrogen vapors during a period of 170 minutes.
The cooling system was disconnected on minute 171,
and the heat was transferred from the vacuum cham-
ber outer walls to the inner walls till the end of the
experiment (minute 200). The residual atmosphere
pressure inside the chamber varied from 4.2×10−5 to
1.4×10−5 Torr under the lowest temperature condi-
tions. Despite the continuous decrease in hot bench
and boards temperature during the initial 60 minutes,
the FPGA surface temperature kept growing to at-
tain the value of Т=420С in minutes 50...60. All the
299
instrument’s modules attained the negative temper-
ature of Т=-340С, but the FPGA surface that was
still positive, Т=120С.
Fig.5. Temperature distribution under high-vacuum
conditions, with hot bench being cooled down to -340C
The breadboard model of the SIDRA instrument
demonstrated its serviceability under high vacuum
conditions with hot bench temperature going down to
-34 and up to +500С. At the same time, the installa-
tion of the heat-eliminating radiator on the surface of
DC-DC converters of the secondary power board was
proved correct and there was found necessary that a
similar radiator be installed on the FPGA surface.
4. MEASUREMENTS OF
ELECTROMAGNETIC
INTERFERENCE GENERATED BY
INSTRUMENT BREADBOARD
MODEL IN POWER CIRCUITS
When functioning as part of the satellite, scientific
equipment should remain stable to the effects of the
electromagnetic interference generated by some other
scientific devices and satellite servicing systems and,
simultaneously, should not cause any harmful influ-
ence on them. For this reasons it is necessary to con-
duct the electromagnetic compatibility (EMC) tests.
The permissible interference levels should be set in
the technical documents pertaining to the equipment.
The tests should be conducted at the stage of the
models development and manufacture to prove the
correctness of schematic solutions.
One of the types of electromagnetic effects is the
conducted interference in power circuits. The impact
of this interference depends on different factors such
as the choice of circuitry, the application of struc-
tural and circuit designs in the form of electric and
magnetic screens, the use of electric filters, the pro-
tective grounding and the optimum electric circuit
routing. To assess the engineering solution that we
adopted, there were made prior measurements of the
levels of inductive interference which are generated
by the instrument model in the primary power cir-
cuit. To avoid the voltage and magnetic interferences
produced by the electric network (U=220 V and fre-
quency f=50 Hz), two storage batteries, having total
potential difference of U=25.5 V were used to supply
power to the SIDRA instrument model. Fig. 6 shows
the measurement unit circuit.
Fig.6. Block scheme of the experiment used to mea-
sure the levels of conducted interference generated by
SIDRA instrument in primary power circuits
Noise levels were measured with the use of micro-
voltmeter В3-57 with a frequency range between 5Hz
to 9MHz and a Polish-production selective microvolt-
meter WMS-4, operating in the frequency range from
30 to 300 MHz.
In order to control the serviceability of the instru-
ment model, imitate the passage of particles through
the detector system, enable the reception of digital
signals by the monitoring computer and observation
of analog signals, different instrumentation was used.
Among them a Tektronix TDS 2012 oscilloscope, a
Tektronix AFG 310 arbitrary-shape signal genera-
tor and an Acer-Ferrari 3400 portable personal com-
puter. With the microvoltmeter В3-57, the measure-
ments were made in two ranges ∆f1=5 Hz...50 kHz,
and ∆f2=5 Hz...9 MHz. In Fig. 7 the experimental
equipment used to measure conducted interference
levels is shown.
Table 1. Peak values of conducted interference in
high-frequency range, generated by SIDRA
instrument breadboard model in primary power
circuits
Number of Borders of Value of
subrange subrange, MHz interference, µV
1 30...35 20
2 35...50 14
3 50...99 20
4 100...109 36
5 110...300 17
According to the measured results, the values of
effective conducted interference Uef generated by
the SIDRA instrument in primary power circuit
U=25.5 V, were as follows: Uef ∼700 µV in the first
frequency range and Uef ∼121 µV in each arbitrary
subrange ∆f=50 kHz of general range ∆f2. Table 1
presents the results of measurements of conducted
interference peak values Upeak in the high-frequency
range thanks to the use of selective microvoltmeter
WMS-4. The peak level of the interference values
300
generated in the 4th frequency subrange is somewhat
higher than in the neighboring subranges. However,
all measured values are sufficiently low, as compared
to the relevant standard requirements. The measure-
ments that were made over the range of frequencies
from 5 Hz to 300MHz demonstrated the correctness
of choice of the elemental composition and arrange-
ment of the instrument secondary power module.
Fig.7. Experimental equipment used to measure the conducted interference levels
CONCLUSIONS
In this work the results of the calibration of the
SIDRA instrument breadboard model with charged
particles accelerated in a cyclotron accelerator of
medium-energy nucleons and derived from radioac-
tive isotopes, have been described. The results prove
the linearity of the telescopic system detectors re-
sponse and also the linearity of the analog signal
processing channels. These methods can be used to
assess the sensitivity of analog signal processing chan-
nels at a chosen gain coefficient, as well as to find the
maximum values of full absorption energies, based on
the preliminary measurement of the dynamic range of
operation of the sample and hold circuit with the help
of test signals.
Thermal and vacuum testing of the instrument
laboratory model demonstrated its serviceability un-
der condition of heating the model-mounting plat-
form up to +500С, as well as its cooling down to
-340С. At the same time, we realized that a heat-
eliminating radiator should be installed on the sur-
face of the Xilinx Spartan III FPGA, operating under
high-vacuum conditions. The electromagnetic com-
patibility tests demonstrated a moderate level of
radio-frequency interference in the frequency range
5 Hz÷300 MHz, which were generated by the SIDRA
instrument breadboard model in the vehicle-borne
primary power circuits, thus proving the correctness
of choosing filtrer circuits for the electrical network
of the instrument secondary power module.
The work was carried out with the support of the
Science and Technology Center in Ukraine, Grant No.
3542, University, city of Alcala, Grant No. CCG08-
UAH/ESP-3991, and Ministry of Science and Inno-
vations in Spain, Grant No. ESP2005-07290-C02-02.
References
1. V.N.Yurov, V.G.Tyshkevich. The scientific
equipment complex of the satellite CORONAS-
Photon. Space flight experience // Results of
space experiment CORONAS-PHOTON. Propo-
sitions to the continuation of the program Coro-
nas: scientific tasks and apparatus. Russia,
Moscow, Space Research Institute, 2012, p. 7-18
(in Russian).
2. D.Muller, R.G.Marsden, O.C. St. Cyr,
H.R.Gilbert. Solar Orbiter. Exploring the
Sun-Heliosphere connection // Solar Phys.
2012, DOI: 10.1007s11207-012-0085-7.
3. W.I. Axford, E.Marsch, V.N.Oraevsky,
V.D.Kuznetsov, T.K.Breus, et al. Space
mission for exploration of the Sun, Mercury and
inner heliosphere ("InterHelios") // Adv. Space
Res. 1998, v. 21, N1-2, p. 275–289.
4. V.D.Kuznetsov, V.N.Oraevsky. Polar-Ecliptic
Patrol (PEP) for Solar Studies and Monitoring
of Space Weather // Journ. British Interplane-
tary Soc. 2002, v. 55, N11-12, p. 398-403.
301
5. A.V.Dudnik, V.K.Persikov, I.I. Zalyubovsky,
T.G.Timakova, E.V.Kurbatov, Yu.D.Kotov
and V.N.Yurov. High sensitivity STEP-F
spectrometr-telescope for high-energy particles
of the CORONAS-PHOTON satellite Exper-
iment // Solar Syst. Res. 2011, v. 45, N3,
p. 212–220.
6. O.V.Dudnik, D.Meziat, M.Prieto. The concept
of compact on-board instrument for measure-
ments of particle fluxes and dose rates // Sci-
entific Session of Moscow Engineering Physics
Institute-2009, Moscow, Russia, Abstracts. 2009,
v. 2. p. 151 (in Russian).
7. O.V.Dudnik, V.V.Bilogub, E.V.Kurbatov,
T.G.Timakova, V.N.Dubina, D.Meziat,
M.Prieto. Compact on-board instrument
SIDRA for measurement of particle fluxes and
dose rates – concept and first model // 9th
Ukrainian Conf. on space research. Crimea,
Ukraine. Abstracts, 2009, p. 78.
8. O.V.Dudnik, M.Prieto, E.V.Kurbatov,
S. Sanchez, T.G.Timakova, V.N.Dubina,
P. Parra. First concept of compact instrument
SIDRA for measurements of particle fluxes in
the space // Journ. of Kharkov University, phys.
series "Nuclei, Particles, Fields". 2011, v. 969,
iss. 3(51), p. 62-66.
9. O.V.Dudnik, S. Sanchez, M.Prieto,
E.V.Kurbatov, T.G.Timakova, V.N.Dubina,
P. Parra. Onboard instrument SIDRA prototype
for measurements of radiation environment
in the space // 39th Scientific Assembly of
the Committee on Space Research. July 14-22,
2012. Mysore, India. Abstracts. Session H0.3:
“Technical Development of Instrumentation for
Current Missions”, STW-B-153 H0.3-0023-12.
p. 106.
10. O.V.Dudnik, M.Prieto, E.V.Kurbatov,
S. Sanchez, T.G.Timakova, K.G.Titov, P. Parra.
Small-sized device for monitoring of high energy
electrons and nuclei in the open space // Space
Sci. and Tech. 2012, v. 18, N6, p. 22-34 (in
Russian).
11. L.А. Sarkisyan, E.F.Kiryanov, Yu.A.Vorobyov.
Modernization of 120-cm’s cyclotron// Pribory i
Tekhnika Eksperimenta. 1979, v. 24, N1, p. 19-21
(in Russian).
12. E.F.Kirjanov, A.V. Spassky. 120-cm centimeter
cyclotron of the Skobeltsyn Institute of Nuclear
Physics of the Lomonosov Moscow State Univer-
sity // Researches on nuclear and atomic physics
on cyclotrons of the SINP of the MSU. Russia,
Moscow, Moscow State University, 2009, p. 44-52
(in Russian).
РЕЗУЛЬТАТЫ ПЕРВЫХ ИСПЫТАНИЙ ЛАБОРАТОРНОГО МАКЕТА
СПУТНИКОВОГО ПРИБОРА SIDRA
А.В.Дудник, Е.В.Курбатов, А.М.Авилов, М.Прето, С.Санчез, А.В.Спасский,
К.Г.Титов, Я.Сильвестер, Ш.Гбурек, П.Подгурски
Представлены результаты градуировки твердотельных детекторов и электронных каналов лаборатор-
ного макета спутникового спектрометра-телескопа знергичных заряженных частиц SIDRA. Описыва-
ются блок-схемы и экспериментальное оборудование для проведения тепловакуумных испытаний узлов
и модулей компактной спутниковой аппаратуры и для осуществления испытаний научных приборов на
электромагнитную совместимость. Обсуждаются результаты измеренных тепловых режимов работы
критических узлов модулей аналоговой и цифровой обработок сигналов прототипа прибора SIDRA.
Наконец, представлены уровни кондуктивных помех, создаваемых макетом прибора в цепях первичного
бортового питания.
РЕЗУЛЬТАТИ ПЕРШИХ ВИПРОБУВАНЬ ЛАБОРАТОРНОГО МАКЕТУ
СУПУТНИКОВОГО ПРИЛАДУ SIDRA
О.В.Дудник, Є.В.Курбатов, А.М.Авiлов, М.Прєто, С.Санчез, А.В.Спаський,
К.Г.Тiтов, Я.Сiльвестер, Ш.Гбурек, П.Подгурскi
Представлено результати градуювання твердотiльних детекторiв i електронних каналiв лабораторного
макету супутникового спектрометру-телескопу енергiйних заряджених частинок SIDRA. Описуються
блок-схеми i експериментальне обладнання для здiйснення тепловакуумних випробувань вузлiв i мо-
дулiв компактної супутникової апаратури та для проведення випробувань наукових приладiв на елек-
тромагнiтну сумiснiсть. Обговорюються результати вимiряних теплових режимiв роботи критичних
вузлiв модулiв аналогової i цифрової обробки сигналiв прототипу приладу SIDRA. Нарештi, представ-
ленi рiвнi кондуктивних завад, що створює макет приладу в ланцюгах первинного бортового живлення.
302
|