Физическая теория полезной длительной прочности металлических кристаллов
В рамках выдвинутой концепции полезной, т.е. исключающей разрушение, длительной прочности металлических кристаллов проведены теоретические и экспериментальные исследования физической природы микротекучести и дислокационной релаксации напряжений. Выполнен активационный анализ механизма прерывистого...
Збережено в:
Дата: | 2013 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут проблем міцності ім. Г.С. Писаренко НАН України
2013
|
Назва видання: | Проблемы прочности |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/112037 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Физическая теория полезной длительной прочности металлических кристаллов / В.Г. Ткаченко // Проблемы прочности. — 2013. — № 5. — С. 58-71. — Бібліогр.: 19 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineРезюме: | В рамках выдвинутой концепции полезной, т.е. исключающей разрушение, длительной прочности металлических кристаллов проведены теоретические и экспериментальные исследования физической природы микротекучести и дислокационной релаксации напряжений.
Выполнен активационный анализ механизма прерывистого (повторного) закрепления дислокаций и разделены вклады силового взаимодействия и термической активации связанных
дислокаций, обеспечивающие преодоление близкодействующих барьеров в нанообъемах первичных -твердых растворов. Показано, что для исследованного механизма с увеличением
времени релаксации термически активированное напряжение стремится к атермической
компоненте, а энергия, подведенная к барьерам по термофлуктуационному механизму, линейно повышается до величины потенциального барьера сопротивления движению дислокаций.
Сформулирован физический (дислокационный) критерий полезной длительной прочности, учитывающий влияние кристаллической и дефектной структуры на локализацию (полос) сдвига в
процессе накопления микроскопической деформации ниже макроскопического предела текучести. Теоретические исследования релаксации напряжений согласуются с данными, полученными для новых экспериментальных сплавов системы Mg–Al–Ca (Ti) с улучшенными характеристиками сопротивления ползучести (с допуском на деформацию ε ~ 0,2...0,4% при
έ ~ 10⁻⁹ ... 10⁻¹⁰ c⁻¹) и длительной прочности (70 МПа в течение 200 ч без разрушения),
повышающими термическую стабильность дислокационной структуры на 423...473 К.
К |
---|